
Bull. Korean Math. Soc. 60 (2023), No. 1, pp. 1–22

https://doi.org/10.4134/BKMS.b210464

pISSN: 1015-8634 / eISSN: 2234-3016

ON CHOWLA’S HYPOTHESIS IMPLYING THAT

L(s, χ) > 0 FOR s > 0 FOR REAL CHARACTERS χ

Stéphane R. Louboutin

Abstract. Let L(s, χ) be the Dirichlet L-series associated with an f -
periodic complex function χ. Let P (X) ∈ C[X]. We give an expres-

sion for
∑f

n=1 χ(n)P (n) as a linear combination of the L(−n, χ)’s for
0 ≤ n < degP (X). We deduce some consequences pertaining to the

Chowla hypothesis implying that L(s, χ) > 0 for s > 0 for real Dirichlet

characters χ. To date no extended numerical computation on this hypoth-
esis is available. In fact by a result of R. C. Baker and H. L. Montgomery

we know that it does not hold for almost all fundamental discriminants.

Our present numerical computation shows that surprisingly it holds true
for at least 65% of the real, even and primitive Dirichlet characters of con-

ductors less than 106. We also show that a generalized Chowla hypothesis

holds true for at least 72% of the real, even and primitive Dirichlet charac-
ters of conductors less than 106. Since checking this generalized Chowla’s

hypothesis is easy to program and relies only on exact computation with
rational integers, we do think that it should be part of any numerical

computation verifying that L(s, χ) > 0 for s > 0 for real Dirichlet char-

acters χ. To date, this verification for real, even and primitive Dirichlet
characters has been done only for conductors less than 2 · 105.

1. Introduction

It is conjectured that L(s, χ) > 0 for s > 0 for all non-principal real Dirich-
let characters χ. By (3), we may assume that χ is primitive. By [11], this
conjecture holds true for at least 20% of the odd characters modulo 8d associ-
ated with the imaginary quadratic fields Q(

√
−2d) of discriminants −8d, where

d > 0 is odd and square-free. Moreover, numerical computations for testing
this conjecture have been carried out for odd characters (see [20] for conduc-
tors f ≤ 593000, and [26] for conductors f ≤ 3 · 108). In fact, one proves that
ζK(s) < 0 for 0 < s < 1, where K is the imaginary quadratic number field
associated with such a character. In contrast, for even characters numerical
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computations have been carried out only up to much smaller bounds: for con-
ductors less than or equal to 227 in [22] and [23], less than 2 · 105 in [10] and
less than 4 · 105 in [21].

1.1. Chowla’s method and the Fekete polynomial

Let L(s, χ) be the meromorphic continuation to the complex plane of the
L-series L(s, χ) :=

∑
n≥1 χ(n)n−s, <(s) > 1, attached to an f -periodic real-

valued function χ. It has only one pole, at s = 1, a simple pole of residue

χ1(f) :=
∑f
n=1 χ(n) (e.g. see the proof of Theorem 4.1 below). We will often

assume that χ1(f) = 0, which is the case whenever χ is a real non-principal
Dirichlet character modulo f ≥ 3. In that situation, L(s, χ) is therefore an
entire function. Set χ0 = χ and for r ≥ 0, define inductively χr by

χr+1(n) =

n∑
k=1

χr(k) (n ≥ 1)

and set

(1) m(χ) := min{r ≥ 1 : χr(n) ≥ 0 for all n ≥ 1}
with the convention min(∅) =∞.

Since

F (t, χ) :=
∑
n≥1

χ(n)tn = (1− t)N
(∑
n≥1

χN (n)tn
)

(0 ≤ t < 1)

and

Γ(s)L(s, χ) =

∫ ∞
0

F (e−t, χ)ts−1dt (<(s) > 0),

we obtain that

(2) m(χ) <∞ implies L(s, χ) > 0 for s > 0

(see [4]). Since χ is f -periodic, we have

F (t, χ) =
P (t, χ)

1− tf
, where P (t, χ) :=

f∑
n=1

χ(n)tn.

Then,
m(χ) =∞ if and only if P (t, χ) = 0 for some t ∈ (0, 1),

by [3, Lemma 6]. By [2] and [15], the Fekete polynomial P (t, χ) has a large
number of zeros in (0, 1) for almost all real primitive characters. But as our
computation after Proposition 1.1 show, at least 65% of the Fekete polynomials
P (t, χ)’s have no zero in (0, 1) for χ real, even, primitive and of conductor≤ 106,
as m(χ) ≤ 20. Using Sturm’s algorithm with Maple on a micro-computer, we
obtained in 30 minutes of computation that m(χ) =∞ for exactly 9 out of the
153 real, even, non-principal and primitive Dirichlet characters of conductors
f ≤ 500, and 27 out of the 153 real, odd non-principal and primitive characters
of conductors f ≤ 500. We also checked in 3 hours of computation that m(χ) <
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∞ for the 2 real, even and primitive Dirichlet characters modulo 1277 and 1973
considered in [3, Section 6]. However, the degree of P (t, χ) becomes rapidly
too large to use Sturm’s algorithm to test whether m(χ) =∞. Indeed, it took
us 8 hours and 30 minutes to obtain that m(χ) =∞ for exactly 28 out of the
302 real, even, non-principal and primitive Dirichlet characters of conductors
f ≤ 1000, the ones given in Table 2.

Let χ be a real character modulo f ≡ 0 (mod 4). Then, n ≡ (1 + f
2 )(n+ f

2 )

(mod f) for n ∈ Z odd. Hence χ(n+ f
2 ) = εχ(n) for n ∈ Z, where ε := χ(1+ f

2 ).

Since (1 + f/2)2 ≡ 1 (mod f), we have ε ∈ {±1}, and ε = −1 whenever χ is
primitive. Hence P (t, χ) = (1 + εtf/2)tQ(t2, χ) and m(χ) = ∞ if and only

if Q(t, χ) = 0 for some t ∈ (0, 1), where Q(t, χ) =
∑f/4−1
n=0 χ(2n + 1)tn is of

degree four times smaller than the one of P (t, χ). We obtained in less than
five minutes of computation that m(χ) =∞ for exactly 12 out of the 103 real,
even, non-principal and primitive Dirichlet characters of even conductors less
than or equal to 1000, and 22 out of the 101 real, odd and primitive Dirichlet
characters of even conductors less than or equal to 1000.

Let χ denote a real non-principal character. It is known that m(χ) =∞ for
infinitely many χ’s, see [14]. In fact, if χ(2) = χ(3) = χ(5) = χ(7) = χ(11) =
−1, then m(χ) = ∞, see [3]. Hence, m(χ) = ∞ for at least 3.125% of the
χ’s. It is also known that m(χ) =∞ whenever L(1, χ) is small enough, e.g. if
L(1, χ) ≤ 1 − log 2 = 0.306852 . . . (see [17], [18] and [19]). By [7], there is a
positive proportion of χ’s for which this holds true. For example, let χ be the
real odd character modulo 163 associated with the imaginary quadratic field
Q(
√
−163) of class number equal to 1. Then L(1, χ) = π/

√
163 is less than

1− log(2) and χ(p) = −1 for 2 ≤ p ≤ 37 and p prime. Hence, Chowla’s method
does not apply for proving that L(s, χ) > 0 for this character and B. Rosser
had a hard time in [23] to prove that L(s, χ) > 0 for this character.

Appart from Sturm’s algorithm, we do not know another algorithm for test-
ing whether m(χ) < ∞ nor one for computing m(χ). Point 2 of Proposition
1.1 to be proved in Section 3 provides us with a simple procedure to decide
whether χN ≥ 0. Let χ run over the N(B) real, even and primitive Dirichlet
characters of conductors f ≤ B. Hence, χ is well determined by its conductor.
Using UBASIC on a PC Optiplex 780 with Intel Core 2 Duo E7500, 2.93 Ghz,
we computed the number N20(B) of χ’s for which χk(f) ≥ 0 for 1 ≤ k < 20 and
χ20(n) ≥ 0 for 1 ≤ n ≤ f , in which case L(s, χ) > 0 for s > 0, by Proposition
1.1. The time needed to complete these computations are denoted by T20:

B 102 103 104 105 106

N(B) 30 302 3043 30394 303957
N20(B) 30 273 2451 21886 197899
ρ20(B) = 100N20(B)/N(B) 100 90.397 . . . 80.545 . . . 72.007 . . . 65.107 . . .
T20 0sec 0sec 7sec 11mn13sec 17h56mn07sec

Proposition 1.1. Let χ be a real valued f -periodic function.

(1) χN is f -periodic if and only if χk(f) = 0 for 1 ≤ k ≤ N .
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(2) If χk(f) ≥ 0 for 1 ≤ k < N , then χN ≥ 0 if and only if χN (n) ≥ 0
for 1 ≤ n ≤ f . Notice that if this holds true for some N0 ≥ 1, then it
holds true for all N ≥ N0.

(3) If (i) χk(f) = 0 for 1 ≤ k < N0, (ii) χN0
(f) 6= 0 and m(χ) <∞, then

χN0
(f) > 0.

Corollary 1.2. Let χ be a real and non-principal Dirichlet character modulo f .
Then, χ1(f) = 0 whenever χ is odd and χ1(f) = χ2(f) = 0 whenever χ is even.
Hence, χ1 is f -periodic, χ1 ≥ 0 if and only if χ1(n) ≥ 0 for 1 ≤ n ≤ (f − 1)/2
and χ2 ≥ 0 if and only if χ2(n) ≥ 0 for 1 ≤ n ≤ f . Now, assume that χ is
even. Then, (i) we cannot have χ1 ≥ 0, (ii) χ2 is f -periodic, (iii) χ2 ≥ 0 if
and only if χ2(n) ≥ 0 for 1 ≤ n ≤ (f − 2)/2, and (iv) χ3 ≥ 0 if and only if
χ3(n) ≥ 0 for 1 ≤ n ≤ f .

Proof. For the well known first assertion, see Corollary 4.2. Now, assume that
χ is even. Since χ1(f) = 0, we have

χ1(f − 1− n) = χ1(f)−
f∑

k=f−n

χ(k) = −
n∑
k=0

χ(f − k) = −χ1(n)

for 0 ≤ n ≤ f − 1. Hence χ1(f − 2) = −1. Since χ1(f) = χ2(f) = 0, we have
χ2(f − 1) = χ2(f) − χ1(f) = 0, χ2 is f -periodic (Proposition 1.1), χ2 ≥ 0 if
and only if χ2(n) ≥ 0 for 0 ≤ n ≤ f − 2. Finally,

χ2(f − n− 2) = χ2(f − 1)−
f−1∑

k=f−1−n

χ1(k) = −
n∑
k=0

χ1(f − 1− k) = χ2(n)

for 0 ≤ n ≤ f − 2. �

1.2. Using induced characters

See [5,6,8,9,16,23]. Let χ′ be a non-principal real character modulo f ′ = df
induced by a character χ modulo f dividing f ′. Then

(3) L(s, χ′) = L(s, χ)×
∏

p prime and p | d

(
1− χ(p)

ps

)
.

Hence, L(s, χ′) > 0 for s > 0 if and only if L(s, χ) > 0 for s > 0. In particular,
if m(χ′) < ∞ for some induced character, then L(s, χ) > 0 for s > 0. The
non-principal primitive real characters are of conductors f = |D| > 1, where
D ∈ Z is a fundamental discriminant, i.e., either D ≡ 1 (mod 4) is square-free
or D ≡ 8, 12 (mod 16) and D/4 is square-free. For such a D there is exactly
one such primitive real Dirichlet character. It is even if D > 0 and odd if
D < 0. For example, let χ be the real, even and primitive Dirichlet character
modulo f = 173. Then m(χ) =∞. However, m(χ′′) = 82 <∞ for the induced
character χ′′ modulo f ′′ = 10f = 1730. In Table 2 in Section 8, for each of the
28 real, even and primitive Dirichlet characters χ of conductors f ≤ 1000 for
which m(χ) = ∞ we give an induced character χ′′ for which m(χ′′) < ∞. It
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follows that L(s, χ) > 0 for s > 0 for all the positive discriminants less than
1000.

Lemma 1.3 (See [19, Lemma 6.1]). Let χ be a non-principal real Dirichlet
character modulo f . Let χ′ be the character modulo f ′ = pf induced by χ,
where p ≥ 2 is prime.

(i) If χ(p) = −1, then m(χ) <∞ implies m(χ′) <∞.
(ii) If χ(p) = 0, then m(χ) = m(χ′).
(iii) If χ(p) = +1, then m(χ) =∞ implies m(χ′) =∞.

Proof. (i) If χ(p) = 0, then χ′(n) = χ(n) for n ∈ Z, hence F (t, χ′) = F (t, χ).
Now assume that χ(p) 6= 0. Then χ′(n) = 0 if p divides n and χ′(n) = χ(n)
otherwise. Therefore,

F (t, χ′) =
∑
n≥1

χ′(n)tn =
∑
n≥1

χ(n)tn −
∑
n≥1
p|n

χ(n)tn = F (t, χ)− χ(p)F (tp, χ).

(ii) If χ(p) = −1 and m(χ) < ∞, then F (t, χ) > 0 for t ∈ (0, 1) and
F (t, χ′) = F (t, χ) + F (tp, χ) > 0 for t ∈ (0, 1) and m(χ′) <∞.

(iii) Finally, assume that χ(p) = +1 and m(χ) = ∞. Let tχ ∈ (0, 1) be
the smallest zero in (0, 1) of F (t, χ). We have F (t, χ) > 0 in (0, tχ), hence
F (tχ, χ

′) = −F (tpχ, χ) < 0 and m(χ′) =∞. �

According to this lemma we will restrict ourselves to d-induced charac-
ters. A non-principal real Dirichlet character χ modulo f > 1 is called d
induced, or d-induced by ψ, if (i) d divides f , (ii) χ is induced by some
primitive Dirichlet character ψ modulo f/d and (iii) d ∈ E(ψ) := {d ≥ 1 :
d is square-free and ψ(p) = −1 for any prime p ≥ 2 dividing d}.

Conjecture 1.4 (Generalized Chowla Hypothesis). Let ψ be a real primitive
Dirichlet character modulo fψ > 1. There exists some d-induced character χ
modulo f = dfψ and some N ≥ 1 such that χr(f) ≥ 0 for 1 ≤ r < N and
χN (n) ≥ 0 for 1 ≤ n ≤ f .

The Generalized Chowla Hypothesis holds true for all the real, even and
primitive Dirichlet characters of conductors less than 103 and for at least 73%
of those of conductors less than 106, see Section 8. For the real primitive char-
acters ψ of conductor 1277 for which m(ψ) = 766 or 1973 for which m(ψ) = 567
considered in [3], their 2-induced characters χ satisfy the Generalized Chowla
Hypothesis with N = 8, and m(χ) = 8 in both cases.

2. Statements of the results to be proved

Theorem 2.1. Let χ be a real odd character modulo f . Then, χ1(f) = 0,
χ2(f) ≥ 0 and χ3(f) ≥ 0. Hence, if 1 ≤ N ≤ 4, then χN (n) ≥ 0 for all n ≥ 0
if and only if χN (n) ≥ 0 for 0 ≤ n ≤ f . Moreover, if χ is primitive, then
χ2(f) > 0 and χ3(f) > 0, but there are infinitely many real, odd and primitive
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characters χ’s of prime conductors f = p ≡ 3 (mod 4) for which χ4(f) < 0
and infinitely many of them for which χ4(f) > 0.

Theorem 2.2. Let χ be a real, even and non-principal character modulo f .
Then, χ1(f) = χ2(f) = 0. Moreover, χ3(f) > 0 whenever χ is primitive.
However, if ψ is a real primitive Dirichlet character modulo fψ > 1 and p is a
prime such that ψ(p) = +1, then χ3(f) < 0 for the character χ modulo f = pfψ
induced by ψ (and m(χ) =∞, by Proposition 1.1).

Theorem 2.3. Let χ be a real and even Dirichlet character modulo f > 2.
Assume that χ is primitive or that χ d-induced by a primitive character. Then,
χ1(f) = χ2(f) = 0 and χN (f) > 0 for 3 ≤ N ≤ 13. Hence, if 2 ≤ N ≤ 14,
then χN (n) ≥ 0 for all n ≥ 0 if and only if χN (n) ≥ 0 for 0 ≤ n ≤ f . However,
there are infinitely many real, even and primitive Dirichlet characters χ’s of
prime conductors f = p ≡ 1 (mod 4) for which χ14(f) < 0 and infinitely many
real, even and primitive Dirichlet characters χ’s of prime conductors f = p ≡ 1
(mod 4) for which χ14(f) > 0.

3. Proof of Proposition 1.1

Lemma 3.1. Set P0(X) = 1 and Pk(X) = X(X + 1) · · · (X + k − 1)/k! for
k ≥ 1. Let χ : Z≥1 → C be f -periodic. Then

(4) χN (n+ f) = χN (n) +

N−1∑
k=0

Pk(n)χN−k(f) (for N ≥ 1 and n ≥ 1).

Consequently, χN is f -periodic if and only if χk(f) = 0 for 1 ≤ k ≤ N .

Proof. For N = 1 and n ≥ 1, we do have

χ1(n+ f) = χ1(f) +

n∑
k=1

χ(k + f) = χ1(f) + χ1(n) = χ1(n) + P0(n)χ1(f).

By induction on N ≥ 1 we then obtain

χN+1(n+ f) = χN+1(f) +

n∑
l=1

χN (l + f)

= χN+1(f) +

n∑
l=1

(
χN (l) +

N−1∑
k=0

Pk(l)χN−l(f)

)

= χN+1(f) + χN+1(n) +

N−1∑
k=0

(
n∑
l=1

Pk(l)

)
χN−l(f).

Clearly, Pk(l) = Pk+1(l)−Pk+1(l−1) for k ≥ 0 and l ≥ 1. Hence,
∑n
l=1 Pk(l) =

Pk+1(n) for n ≥ 1 and k ≥ 0. Therefore,

χN+1(n+ f) = χN+1(f) + P0(n)χN+1(n) +

N−1∑
k=0

Pk+1(n)χN+1−(k+1)(f)
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= χN+1(f) +

N∑
k=0

Pk(n)χN+1−k(f)

and (4) follows. Consequently, χN is f -periodic if and only if P (n) = 0 for

n ≥ 1, hence if and only if P (X) = 0, where P (X) :=
∑N
k=0 Pk(X)χN+1−k(f).

Since degPk(X) = k, the Pk(X)’s form a Q-basis of Q[X] and P (X) = 0 if and
only if χN+1−k(f) = 0 for 0 ≤ k ≤ N − 1. �

The first and second points of Proposition 1.1 follow. Let us prove its third
point. If χN ≥ 0, then χN ′ ≥ 0 for N ′ ≥ N . Hence, if m(χ) < ∞ there exists
N ≥ N0 such that χN ≥ 0. Using (4), by induction on m ≥ 1, we have

χN (mf) =

N−N0∑
k=0

(
m−1∑
l=1

Pk(lf)

)
χN−k(f) (m ≥ 1).

Since
m−1∑
l=1

ln =
mn+1

n+ 1
+ · · ·

is a polynomial in m of degree n+ 1, it follows that

m−1∑
l=1

Pk(lf) =
fk

(k + 1)!
mk+1 + · · ·

is a polynomial in m of degree k + 1. Therefore,

P (m) := χN (mf) = χN0
(f)

fN−N0

(N −N0 + 1)!
mN−N0+1 + · · ·

is a polynomial in m of degree N−N0+1. If χN ≥ 0, then P (m) ≥ 0 for m ≥ 1
and this leading coefficient must me nonnegative, which yields the desired third
point.

Finally, let us prove its fourth point. Set X(1) = 1 and X(n) = −1 for
n ≥ 2. Since χ ≥ X, we have χr ≥ Xr. Since

Xr(n) =
r + 1− n
r − 1 + n

(
n+ r − 1

r

)
(see [18, (2.1)]), we have Xf−1(n) ≥ 0 for 1 ≤ n ≤ f .

4. A formula for
∑f

n=1 χ(n)P (n)

Theorem 4.1. Let 0 6= P (X) ∈ C[X]. Let f ≥ 1 be an integer. Let L(s, χ)
be the meromorphic continuation of the L-series L(s, χ) :=

∑
n≥1 χ(n)n−s at-

tached to an f -periodic function χ : Zn≥1 → C. Then,

S(P (X), χ) :=

f∑
n=1

P (n)χ(n)
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=
χ1(f)

f

∫ f

0

P (t)dt−
∑
n≥0

P (n)(f)− P (n)(0)

n!
L(−n, χ)

(this sum is finite, as we can disregard the indices n ≥ degP (X)). In particular,
for χ a non-principal Dirichlet character modulo f and for 0 6= P (X) ∈ C[X]
we have

S(P (X), χ) = −
∑

0≤n<deg P (X)
n≡δχ (mod 2)

P (n)(f)− P (n)(0)

n!
L(−n, χ),

where δχ = 1+χ(−1)
2 ∈ {0, 1}.

Proof. Both sides being linear in P (X), it suffices to prove this identity for
P (X) = 1, which is clear, and for P (X) = XN with N ≥ 1. Let N ≥ 1 be a
positive integer. Let us prove that

S(XN , χ) :=

f∑
n=1

χ(n)nN =
fN

N + 1
χ1(f)− fN

N−1∑
k=0

(
N

k

)
f−kL(−k, χ).

Let Bn(X), n ≥ 0, be the Bernoulli polynomials defined by

(5)
teXt

et − 1
=
∑
n≥0

Bn(X)
tn

n!
.

Let

ζ(s, b) =
∑
n≥0

1

(n+ b)s
(<(s) > 1, 0 < b ≤ 1)

be the Hurwitz zeta function. We have (see [25, Theorem 4.2]):

(6) ζ(1−m, b) = −Bm(b)/m (m ≥ 1).

Now, by f -periodicity of χ, we have

(7) L(s, χ) = f−s
f∑
n=1

χ(n)ζ(s, n/f) (<(s) > 1).

Hence, L(s, χ) admits a meromorphic continuation to the complex plane, with
only one pole, at s = 1, a simple pole of residue χ1(f). By (6) and (7), it
follows that

−fN
N−1∑
k=0

(
N

k

)
f−kL(−k, χ) = −fN

N−1∑
k=0

(
N

k

) f∑
n=1

χ(n)ζ(−k, n/f)

= −fN
f∑
n=1

χ(n)

N−1∑
k=0

(
N

k

)
−Bk+1(n/f)

k + 1

= fN
f∑
n=1

χ(n)

N + 1

N∑
k=1

(
N + 1

k

)
Bk(n/f).
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However, by equating the coefficients of XN in the identity∑
n≥0

Xn t
n+1

n!
= teXt =

(∑
n≥0

Bn(X)
tn

n!

)
(et − 1) =

(∑
n≥0

Bn(X)
tn

n!

)(∑
n≥1

tn

n!

)
,

for N ≥ 1 we obtain

XN =
1

N + 1

N∑
k=0

(
N + 1

k

)
Bk(X) =

1

N + 1
+

1

N + 1

N∑
k=1

(
N + 1

k

)
Bk(X).

This completes the proof of the first assertion.
For n ≥ 0, we have Bn(1−X) = (−1)nBn(X), by changing t into −t in (5).

Hence, by (6) and (7), for n ≥ 0 we have

L(−n, χ) = − fn

n+ 1

f−1∑
m=1

χ(m)Bn+1

(
m

f

)

= − fn

n+ 1

f−1∑
m=1

χ(f −m)Bn+1

(
f −m
f

)
= −χ(−1)(−1)n+1L(−n, χ)

and L(−n, χ) = 0 for (−1)n 6= χ(−1), i.e., for n 6≡ δχ (mod 2). The second
assertion follows, noticing that χ1(f) = 0. �

Corollary 4.2. For 1 ≤ n ≤ N−1, we set QN (X) = (X+1)(X+2) · · · (X+N)
and

RN,n(X) :=
Q

(n)
N (X)−Q(n)

N (0)
N !

(N−n)!
∈ Q[X],

a monic polynomial of degree N − n ≥ 1 with constant term equal to 0.
For N ≥ 2 and χ a non-principal Dirichlet character modulo f , we have

χN (f) =
χ(−1)

(N − 1)!
S(QN−1(X), χ)

= −χ(−1)
∑

0≤n≤N−2
n≡δχ (mod 2)

RN−1,n(f)

(N − 1− n)!

L(−n, χ)

n!
.

(8)

Consequently, if χ is induced by a real and primitive Dirichlet character ψ
modulo fψ dividing f , then

(9) χN (f) =
fN−1

√
f/d

π

∑
0≤n≤N−2

n≡δχ (mod 2)

(−1)
n−δχ

2

(N − 1− n)!
an(χ)

RN−1,n(f)

fN−1−n
L(n+ 1, ψ)

(2π)n
,

where d := f/fψ and

an(χ) :=
1

dn

∏
p|d

(1− ψ(p)pn)



10 S. R. LOUBOUTIN

(hence, d = 1 and an(χ) = 1 if χ is primitive). Finally, for n ≤ N − 1 it holds
that RN,n(X) is monic and divisible in Q[X] by X + N + 1 whenever n ≡ N
(mod 2).

Proof. By induction on N ≥ 0, we have∑
n≥1

χ(n)xn = (1− x)N
∑
n≥1

χN (n)xn.

Hence,∑
n≥1

χN (n)xn =

{
1

(N − 1)!

dN−1

dxN−1

(
1

1− x

)}∑
n≥1

χ(n)xn

=
1

(N − 1)!

(∑
n≥0

(n+ 1)(n+ 2) · · · (n+N − 1)xn
)(∑
n≥1

χ(n)xn
)
.

Identifying the coefficients of xn of both sides, we get

χN (n) =
1

(N − 1)!

n−1∑
i=0

QN−1(i)χ(n− i) (N ≥ 1, n ≥ 1),

and (8) follows by taking n = f .
Since ψ is a real and primitive Dirichlet character, using the functional

equation of the L-function L(s, ψ) (e.g., see [25, Chapter 4]), noticing that its

root number Wψ is equal to +1 and setting δψ = 1+ψ(−1)
2 ∈ {0, 1} we have:

L(−n, ψ) = n! · cos
(
π
n+ δψ

2

)√fψ
π

(
fψ
2π

)n
L(n+ 1, ψ).

By (3), we have L(−n, χ) = dnan(χ)L(−n, ψ). Since δψ = δχ, we obtain

(10)
L(−n, χ)

n!
=

∏
p|d

(1− ψ(p)pn)

 cos
(
π
n+ δχ

2

)√fψ
π

(
fψ
2π

)n
L(n+ 1, ψ)

(which implies L(−n, χ) = 0 if n ≥ 0 and n 6≡ δχ (mod 2)). Hence, we have

L(−n, χ)

n!
= (−1)

n+δχ
2 an(χ)

√
f/d

π

(
f

2π

)n
L(n+ 1, ψ) for n ≡ δχ (mod 2),

and (9) follows. Finally, QN (X−N−1) = (−1)NQN (−X) gives RN,n(−N−1)

= (N−n)!
N ! ((−1)N−n − 1)Q

(n)
N (0), and the last result follows. �

In particular, for χ an odd and primitive Dirichlet character modulo f , by
Theorem 4.1 and (10) we have

S(Xk, χ) :=

f∑
n=1

nkχ(n) = −
k−1∑
n=0
n even

(
k

n

)
fk−nL(−n, χ)
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= −f
k
√
f

π

k−1∑
n=0
n even

(−1)n/2
k!

(k − n)!

L(n+ 1, χ)

(2π)n
,

and we recover [24, formula for S(k), p. 65] (let us take this opportunity to
mention a misprint in the formula for S(3) at the bottom of [1, p. 153]. This
misprint is repeated in [24, (1-3)]).

If χ is a real, odd and primitive Dirichlet character modulo f , we have

(11) χ4(f) =
f3
√
f

6π

{(
1 +

6

f
+

11

f2

)
L(1, χ)− 3

2π2
L(3, χ)

}
.

Notice also that L(n+ 1, ψ) > 0 for n ≥ 0 and ψ real and primitive.

5. Proof of Theorem 2.1

Let χ be an odd Dirichlet character modulo f induced by a primitive char-
acter ψ of conductor fψ. We have δχ = (1 + χ(−1))/2 = 0. By Corollary 4.2,
we have

χ2(f) = fL(0, χ) and χ3(f) =
f2 + 3f

2
L(0, χ) =

f + 3

2
χ2(f).

By (10), we have

L(0, χ) =

√
fψ

π
L(1, ψ)

∏
p|f

(1− ψ(p)) ≥ 0.

Hence, χ1(f) = 0, χ2(f) ≥ 0 and χ3(f) ≥ 0. Moreover, χ2(f) = χ3(f) = 0 if
and only if χ is not primitive and ψ(p) = +1 for some prime p dividing f . If
χ is primitive modulo f , using (11) and arguing as in [1] or [24] (see also [13]),
we obtain the last assertion of Theorem 2.1.

6. Proof of Theorem 2.2

Let χ be a real, non-principal and even Dirichlet character modulo f induced
by a primitive Dirichlet character ψ of conductor fψ. Set d = f/fψ. We have
δχ = (1 + χ(−1))/2 = 1. By Corollary 4.2, we have χ1(f) = χ2(f) = 0,

χ3(f) = −fL(−1, χ) and χ4(f) = −f
2 + 4f

2
L(−1, χ) =

f + 4

2
χ3(f).

By (10) we have

−L(−1, χ) =
f
3/2
ψ

2π2
L(2, ψ)

∏
p|f

(1− pψ(p)) 6= 0.

The second point of Theorem 2.2 follows.
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7. Proof of Theorem 2.3

7.1. Proof of the first assertion of Theorem 2.3

Proposition 7.1. For a given integer N in the range 3 ≤ N ≤ 13, there exists
an explicit constant CN > 0 such that for any real, even and non-principal
d-induced Dirichlet character χ modulo f we have

χN (f) ≥ CN
fN−1

√
f/d

30 · (N − 2)!
> 0.

Proof. We use (9) with δχ = 1 and notice that

an(χ) = an(d) :=
∏
p|d

(1 +
1

pn
) = 1 +

∑
δ|d
δ>1

1

δn
.

We obtain

χN (f) =
fN−1

√
f/d

2π2 · (N − 2)!

ζ(4)

ζ(2)
CN (f, d, ψ) =

fN−1
√
f/d

30 · (N − 2)!
CN (f, d, ψ),

where

(12) CN (f, d, ψ) =
∑

1≤n<N/2

(−1)n−1a2n−1(d)
(N − 2)!

(N − 2n)!
PN,n(f)

ζ(2)L(2n, ψ)

(4π2)n−1ζ(4)

with

PN,n(f) =
RN−1,2n−1(f)

fN−2n
= 1 +O(

1

f
)

(recall that RN,n(X) is monic of degree N − n). We have to prove that for
each N ∈ {3, . . . , 13} we can find some CN > 0 such that CN (f, d, ψ) ≥ CN
for any real, even and non-principal Dirichlet character χ modulo f as in the
third point of Theorem 2.2.

Notice that the coefficients of RN,k(X) ∈ Q[X] are non-negative and that

RN,k+1(X) =
R′N,k(X)−R′N,k(0)

N − k
(0 ≤ k ≤ N − 2).

It follows that the coefficient of Xi−1 of RN,k+1(X) is less than or equal to
the coefficient of Xi of RN,k(X). Therefore, we have RN,k+1(x)/xN−k−1 ≤
RN,k(x)/xN−k for x ≥ 1 and

1 ≤ PN,n+1(f) ≤ PN,n(f) (1 ≤ n < N/2− 1).

Throughout the proof we set

Q 3 rn :=
1

(4π2)n−1
×

{
ζ(2)ζ(4n)
ζ(4)ζ(2n) if n is odd,
ζ(2)ζ(2n)
ζ(4) if n is even.

1. The case 3 ≤ N ≤ 8. Set

Q 3 κN :=
∑

1≤n<N/2

(−1)n−1
(N − 2)!

(N − 2n)!
rn.
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Hence, κ3 = 1, κ4 = 1, κ5 = 3/4, κ6 = 1/2, κ7 = 282/1001 and κ8 = 381/4004,
but κN < 0 for 9 ≤ N ≤ 13.

Since

(13)
ζ(4n)

ζ(2n)
=
∏
p≥2

1

1 + 1
p2n

≤ L(2n, ψ) =
∏
p≥2

1

1− ψ(p)
p2n

≤
∏
p≥2

1

1− 1
p2n

= ζ(2n),

recalling (12) we have

(14)

CN (f, d, ψ) ≥ CN (f, d)

:=
∑

1≤n<N/2

(−1)n−1rna2n−1(d)
(N − 2)!

(N − 2n)!
PN,n(f).

Now, if the An’s are non-negative and satisfy An+1 ≤ 4An for 1 ≤ n < N/2−1
odd, in using

0 ≤ a2(n+1)−1(d)− 1 =
∑
δ|f
δ>1

1

δ2n+1
≤ 1

4

∑
δ|f
δ>1

1

δ2n−1
=

1

4
(a2n−1(d)− 1)

we obtain ∑
1≤n<N/2

(−1)n−1(a2n−1(d)− 1)An

≥
∑

1≤n<N/2−1
n odd

(
(a2n−1(d)− 1)An − (a2(n+1)−1(d)− 1)An+1

)
≥

∑
1≤n<N/2−1

n odd

(a2n−1(d)− 1)
(
An −

1

4
An+1

)
≥ 0

and ∑
1≤n<N/2

(−1)n−1an(d)An ≥
∑

1≤n<N/2

(−1)n−1An,

with equality for d = 1, i.e., for χ primitive.

In our situation we have An = rn
(N−2)!
(N−2n)!PN,n(f) and 1 ≤ PN,n+1(f) ≤

PN,n(f). It follows that for n odd and 1 ≤ n < N/2− 1 we have

An+1

An
≤ (N − 2n)(N − 2n− 1)rn+1

rn

= (N − 2n)(N − 2n− 1)
ζ(2n)ζ(2n+ 2)

4π2ζ(4n)
∈ Q.

Hence, in the range N ≤ 12, we do have An+1 ≤ 4An for 1 ≤ n < N/2 − 1

odd (for N = 13 and n = 1 we have A2/A1 = 110 r2r1
P13,2(f)
P13,1(f)

= 55
12 + O(f−1)).

Hence, recalling (14), for 3 ≤ N ≤ 12 we have

CN (f, d, ψ) ≥ CN (f, d) ≥ CN (f) :=
∑

1≤n<N/2

(−1)n−1rn
(N − 2)!

(N − 2n)!
PN,n(f).



14 S. R. LOUBOUTIN

Now, using any software for algebraic computation, we used Maple, the reader
can easily check that for 3 ≤ N ≤ 8, the CN (f)’s are linear combinations of
1, f−1, . . . , f−(N−3) with non-negative rational coefficients. This is not true for
N = 9. Consequently, for 3 ≤ N ≤ 8 we do have CN (f) ≥ CN (+∞) = κN .
Indeed, we have

C3(f) = P3,1(f) = 1, C4(f) = P4,1(f) = 1 +
4

f
, C5(f) =

3

4
+

15

2f
+

35

2f2
,

C6(f) =

(
1 +

6

f

)
×
(

1

2
+

6

f
+

15

f2

)
, C7(f) =

282

1001
+

35

4f
+

175

2f2
+

735

2f3
+

1624

3f4
,

and

C8(f) =

(
1 +

8

f

)
×
(

381

4004
+

6

f
+

67

f2
+

304

f3
+

469

f4

)
(See Corollary 4.2 for an explanation of the factorisations of the CN (f) for N
even).

2. The case 9 ≤ N ≤ 12. Now, let P = {p1, . . . , pm} be a given finite
set of m ≥ 1 prime integers. For ~ε = (ε1, . . . , εm) ∈ {−1, 0, 1}m, set

Πn(P,~ε,−1) :=
∏
p∈P

p2n − 1

p2n − εk
and Πn(P,~ε,+1) :=

∏
p∈P

p2n + 1

p2n − εk
.

Therefore, Πn(P,~ε,−1) ≤ 1 ≤ Πn(P,~ε,+1). We have∏
p∈P

p2n + 1

p2n − ψ(p)

 ζ(4n)

ζ(2n)
≤ L(2n, ψ) ≤

∏
p∈P

p2n − 1

p2n − ψ(p)

 ζ(2n),

an improvement on (13). Therefore, for the choice ~ε = (ψ(p1), . . . , ψ(pm)),
recalling (12) we have CN (f, d, ψ) ≥ λN (f, d,P,~ε), where

λN (f, d,P,~ε)

:=
∑

1≤n<N/2

(−1)n−1rna2n−1(d)
(N − 2)!

(N − 2n)!
PN,n(f)Πn(P,~ε, (−1)n−1)

is of the form
∑

1≤d<N/2(−1)n−1a2n−1(d)An, with

An = rn
(N − 2)!

(N − 2n)!
PN,n(f)Πn(P,~ε, (−1)n−1).

It follows that for n odd and 1 ≤ n < N/2− 1 we have

An+1

An
≤ (N − 2n)(N − 2n− 1)rn+1

rn

Πn+1(P,~ε,−1)

Πn(P,~ε,+1)

≤ (N − 2n)(N − 2n− 1)rn+1

rn
.
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Hence, in the range N ≤ 12, we do have An+1 ≤ 4An for 1 ≤ n < N/2−1 odd,
and

λN (f, d,P,~ε) ≥ λN (f,P,~ε)

:=
∑

1≤n<N/2

(−1)n−1rn
(N − 2)!

(N − 2n)!
PN,n(f)Πn(P,~ε, (−1)n−1),

a linear combination of 1, f−1, . . . , f−(N−3) with rational coefficients.
Assume that these coefficients are all non-negative rational numbers for all

the 3m possible choices of ~ε ∈ {−1, 0, 1}m, which can be checked by using any
software for algebraic computation. Then each f 7→ λN (f,P,~ε) is a decreasing
function of f and we obtain that for any Dirichlet character χ as in the third
point of Theorem 2.2 we have

CN (f, d, ψ) ≥ κN (P) := min
~ε∈{−1,0,1}m

λN (∞,P,~ε),

where

κN (P) = min
~ε∈{−1,0,1}m

∑
1≤n<N/2

(−1)n−1rn
(N − 2)!

(N − 2n)!
Πn(P,~ε, (−1)n−1).

2A. The case 9 ≤ N ≤ 10. Take P = {2}. There are 3 choices for
~ε to consider. In each case, λN (f, {2},~ε) is indeed a linear combination of
1, f−1, . . . , f−(N−3) with non-negative rational coefficients. This is not true
for N = 11. Consequently, we have CN (f, d, ψ) ≥ κN ({2}), with κ9({2}) =
λ9(∞, {2},−1) = 2057479

14994408 and κ10({2}) = λ10(∞, {2},−1) = 209135
3748602 . Indeed,

for example we have

λ9(f, {2},−1) =
2057479

14994408
+

148383

19448f
+

58161

374f2
+

53865

34f3
+

1189797

136f4
+

50463

2f5
+

29531

f6
.

2B. The case 11 ≤ N ≤ 12. Take P = {2, 3}. There are 9 choices
for ~ε to consider. In each case, λN (f, {2, 3},~ε) is a linear combination of
1, f−1, . . . , f−(N−3) with non-negative rational coefficients. This is not true for
N = 13. Consequently, we have CN (f, d, ψ) ≥ κN ({2, 3}), with κ11({2, 3}) =
λ11(∞, {2, 3}, (−1,−1)) = 261847204793

4696592207450 and κ12({2, 3}) = λ12(∞, {2, 3},
(−1,−1)) = 17351027073

939318441490 .
2B. The case N = 13. Take P = {2, 3, 5}. There are 27 choices

for ~ε to consider. In each case, λN (f, {2, 3, 5},~ε) is a linear combination of
1, f−1, . . . , f−(N−3) with non-negative rational coefficients. This is not true for
N = 14. Consequently, we have C13(f, d, ψ) ≥ κ13({2, 3, 5}) = λ13(∞, {2, 3, 5},
(−1,−1,−1)) = 4180538598139829643562193049

1309391614509749583672631017610 . �
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7.2. Proof of the last assertion of Theorem 2.3

Now, we suppose that χ modulo f > 2 is real, even and primitive. From the
previous section, we have

χN (f) =
(
1 +O

(
f−1

)) fN−1
√
f

30 · (N − 2)!
κN (χ),

where the implied constants in this O(f−1) depend on N only and where

κN (χ) :=
∑

1≤n<N/2

(−1)n−1
(N − 2)!

(N − 2n)!

ζ(2)L(2n, χ)

(4π2)n−1ζ(4)
.

Proposition 7.2. Let χ run over the real, even and non principal Dirichlet
character of prime conductors p ≡ 1 (mod 4). Then, (i) there are infinitely
many prime numbers p ≡ 5 (mod 8) for which χ14(p) < 0 and (ii) for any
given N ≥ 3, there are infinitely many prime numbers p ≡ 1 (mod 8) for
which χk(p) > 0 for 3 ≤ k ≤ N .

Proof. Fix N ≥ 3. Let M ≥ 1 be chosen large enough at the end of the proof.
Let p range over the infinite set of prime numbers p ≡ 5 (mod 8) for which(
qk
p

)
= −1 (Legendre’s symbols) for 1 ≤ k ≤ M , where 3 = q1 < 5 = q2 <

· · · < qM are the first M prime numbers. Take χ =
(
•
p

)
. Since χ(q) = −1

for 2 ≤ q ≤ qM , by choosing M large enough we have that L(2n, χ) is as close
as desired to ζ(4n)/ζ(2n) for 1 ≤ n < N/2. Therefore, κN (χ) is as close as
desired to the rational number

κ−N :=
∑

1≤n<N/2

(−1)n−1
(N − 2)!

(N − 2n)!

ζ(2)ζ(4n)

(4π2)n−1ζ(4)ζ(2n)
.

Consequently, if κ−N < 0, then there are infinitely many prime numbers p ≡ 5

(mod 8) for which χN (p) < 0. The least such N is N = 14, for which κ−14 =
− 6902151

667347070 < 0. The first assertion follows.
In the same way, let p range over the infinite set of prime numbers p ≡ 1

(mod 8) for which
(
qk
p

)
= +1 (Legendre’s symbols) for 1 ≤ k ≤M . By taking

M large enough we obtain that κN (χ) is as close as desired to the rational
number κ+N for p large enough in a suitable infinite set of prime numbers p ≡ 1
(mod 8), where

κ+N :=
∑

1≤n<N/2

(−1)n−1
(N − 2)!

(N − 2n)!

ζ(2)ζ(2n)

(4π2)n−1ζ(4)
.

To prove the second assertion, we now prove that for N ≥ 3 we have

κ+N =
615(N − 2)

N(N − 1)
> 0.
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Using the functional equation for ζ(s) and (6), we obtain

ζ(2n) = (−1)n−1
(4π2)n

2 · (2n)!
B2n(1) (n ≥ 1),

ζ(2) = π2/6, ζ(4) = π4/90 and

κ+N =
30

N(N − 1)

∑
1≤n<N/2

(
N

2n

)
B2n(1),

a rational number. Now, on the one hand we have∑
n≥0

B2n(1)
t2n

(2n)!

∑
k≥1

tk

k!

 =
∑
N≥0

 ∑
0≤n<N/2

(
N

2n

)
B2n(1)

 tN

N !
.

On the other hand, by (5), the left hand side of this identity is equal to

1

2

(
tet

et − 1
+
−te−t

e−t − 1

)
(et − 1) =

1

2
t+

1

2
tet = t+

∑
N≥2

tN

2 · (N − 1)!
.

Hence, using B0(1) = 1, for N ≥ 3 we have∑
1≤n<N/2

(
N

2n

)
B2n(1) = −1 +

∑
0≤n<N/2

(
N

2n

)
B2n(1) = −1 +

N

2
,

and the desired result follows. �

Remark 7.3. Notice that p need not be that large, for example, χ14(61613) < 0.
According to our computation, the least positive fundamental discriminants
D > 0 for which χ14(D) < 0 are D = 24653, 31037 and 39437, and the least
prime fundamental discriminants p ≡ 5 (mod 8) for which χ14(p) < 0 are
p = 61613, 66293 and 73757.

8. Numerical experimentations

We deal with non-trivial (but non necessarily primitive) real and even Dirich-
let characters χ’s. Our numerical computation is based on point 2 of Proposi-
tion 1.1 and on Corollary 1.2. We used UBASIC on a PC Optiplex 780 with
Intel Core 2 Duo E7500, 2.93 Ghz. UBASIC allows fast computation with
large integers up to a little more than 2600 figures in decimal expression. Let
m ≥ 2 be given. Define the property Pm(χ) ∈ {true, false} for χ modulo f
as follows. For m = 2 the property P2(χ) is true if and only if χ2(n) ≥ 0 for
1 ≤ n ≤ (f − 2)/2 (which is equivalent to having χ2(n) ≥ 0 for 1 ≤ n ≤ f but
is twice as fast to test). For m ≥ 3 the property Pm(χ) is true if and only if
χk(f) ≥ 0 for 1 ≤ k < m and χm(n) ≥ 0 for 1 ≤ n ≤ f . If Pm(χ) is true,
then m(χ) ≤ m and L(s, χ) > 0 for s > 0. If some Pm(χ) is true, then all the
Pm′(χ) are true for m′ ≥ m.

First, let χ run over N(B) the real, even and primitive Dirichlet characters of
conductors ≤ B. Hence, χ is well determined by its conductor. We test whether
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Pm(χ) is true, in which case L(s, χ) > 0 for s > 0. Suppose that Pm(χ) is false.
Let 2 ≤ p < q be the least prime integers for which χ(p) = χ(q) = −1. We then
test whether Pm(χ′) is true, where χ′ is the character modulo pf induced by χ.
In which case, L(s, χ′) > 0 for s > 0, hence L(s, χ′) > 0 for s > 0, by (3). If it
is false, we then test whether Pm(χ′′) is true, where χ′′ is the character modulo
pqf induced by χ. In which case, L(s, χ′′) > 0 for s > 0, hence L(s, χ′) > 0 for
s > 0, by (3). The drawback of this procedure it that the moduli get larger and
larger and the numerical computation slower and slower. Let Nm(B), Nm(B)′

and Nm(B)′ be the numbers of real, even and primitive Dirichlet characters χ’s
of conductors ≤ B for which Pm(χ), Pm(χ′) or Pm(χ′′) is true, respectively.
Set ρm(B)′′ = 100Nm(B)/N(B).

Table 1

B 102 103 104 105 106

N(B) 30 302 3043 30394 303957
N2(B) 28 244 2080 17928 159727
N2(B)′ 29 260 2324 20663 185631
N2(B)′′ 30 279 2534 22778 206871
ρ2(B)′′ 100 92.384 · · · 83.273 · · · 74.942 · · · 68.059 · · ·
T2 0sec 0sec 3sec 5mn34sec 8h59mn13sec
T ′2 0sec 0sec 6sec 11mn29sec 18h31mn59sec
T ′′2 0sec 0sec 16sec 37mn17sec 71h21mn47sec
N3(B) 29 257 2260 19893 177662
N3(B)′ 29 268 2440 21814 197090
N3(B)′′ 30 283 2592 23457 214603
ρ3(B)′′ 100 93.708 · · · 85.179 · · · 77.176 · · · 70.603 · · ·
T3 0sec 0sec 4sec 6mn58sec 11h18mn09sec
T ′3 0sec 0sec 7sec 12mn28sec 20h14mn39sec
T ′′3 0sec 0sec 24sec 54mn7sec 111h22mn49sec
N4(B) 29 259 2327 20623 184743
N4(B)′ 30 273 2478 22192 201093
N4(B)′′ 30 283 2613 23723 217603
ρ4(B)′′ 100 93.708 · · · 85.869 · · · 78.051cdots 71.590 · · ·
T4 0sec 0sec 4sec 7mn35sec 12h20mn39sec
T ′4 0sec 0sec 7sec 12mn51sec 20h54mn46sec
T ′′4 0sec 0sec 25sec 59mn52sec 128h45mn00sec
N5(B) 29 264 2360 21006 188597
N5(B)′ 30 274 2491 22387 203291
N5(B)′′ 30 283 2622 23868 219200
ρ5(B)′′ 100 93.708 · · · 86.164 · · · 78.528 · · · 72.115 · · ·
T5 0sec 0sec 4sec 7mn56sec 12h57mn44sec
T ′5 0sec 0sec 7sec 13mn5sec 21h19mn32sec
T ′′5 0sec 0sec 27sec 1h04mn17sec 138h42mn20sec
N10(B) 30 269 2427 21619 195208
N10(B)′ 30 279 2532 22763 207322
N10(B)′′ 30 284 2641 24133 221981
ρ10(B)′′ 100 94.039 · · · 86.789 · · · 79.400 · · · 73.030 · · ·
T10 0sec 0sec 5sec 8mn48sec 14h31mn34sec
T ′10 0sec 0sec 8sec 13mn41sec 22h24mn51sec
T ′′10 0sec 0sec 30sec 1h14mn13sec 160h28mn33sec
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In Table 1, we computed Nm(B), Nm(B)′, Nm(B)′′ and ρm(B)′′ for m ∈
{2, 3, 4, 5, 10} and B ∈ {102, 103, 104, 105}. For a given m the time needed to
complete these computations are denoted by Tm, T ′m and T ′′m, respectively.

Second, let χ run over the 28 real, even non-principal primitive characters
of conductors fχ ≤ 103 for which m(χ) = ∞ (see Section 1.1). We computed
the least product D10(χ) of the consecutive primes p ∈ E(χ) for which the
D10(χ)-induced character χ′ modulo f ′ = D10(χ)fχ satisfies χ′10(n) ≥ 0 for
1 ≤ n ≤ f ′. Hence m(χ′) ≤ 10 < ∞ and L(s, χ) > 0 for these 28 primitive
characters χ. We could also sometimes find some d < D10(χ) for which the
d-induced character χ′′ modulo f ′′ = dfχ satisfies m(χ′′) <∞.

Table 2 (28 cases)

fχ D10(χ) T d m(χ′′)
173 30 10 82
188 3 3 3
248 15 5 5
293 2310 715 25
332 105 15 32
413 330 4sec 22 12
437 510510 18mn17sec 102102 22
453 70 35 5
488 105 35 12
552 5 5 4
572 105 105 8
573 2 2 8
629 6 2 19
668 15015 19mn06sec 15015 5
677 746130 1h23sec 746130 8
717 10010 2002 31
728 165 33 16
773 2730 1365 47
797 6 3 54
813 10 2 40
853 10 5 2
860 231 77 3
888 5 1h1mn10sec 5 10
908 111546435 144h20mn 8580495 10
920 3 3 7
941 462 42 23
957 15470 910 12
965 42 144h20mn 11 11
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9. A faster algorithm

We conclude this paper with a new method for proving that L(s, χ) > 0 for
s > 0 for primitive, real and even Dirichlet characters. When it applies it is
much faster than Chowla’s method. However, at the moment we do not know
how to generalize our result to non-primitive characters. A suitable general-
ization applied to d-induced characters would provide an efficient method for
testing whether L(s, χ) > 0 for s > 0 for more than 41% of the primitive even
Dirichlet characters of prime conductors p ≡ 1 (mod 8) and p ≤ 109.

Theorem 9.1. Let χ be a primitive even Dirichlet character modulo f ≥ 5.
Let N ≥ 2 be the least integer satisfying 1 − e−2π(N+1)/f − e−πN(N+2)/f ≥ 0.

Hence, N is asymptotic to
√

f
2π log( fπ ). If χ1(n) ≥ 1 for 1 ≤ n ≤ N , then

L(s, χ) > 0 for s > 0.

Proof. Recall that we have the following integral representation

Λ(s, χ) := (f/π)s/2Γ(s/2)L(s, χ) =

∫ ∞
1

S(πx/f, χ)(xs/2 + x(1−s)/2)
dx

x
,

where S(x, χ) =
∑
n≥1 χ(n)e−n

2x (e.g. see [12, Chapter 9]). It suffices to prove

that under our hypothesis we have S(x, χ) ≥ 1 for x ≥ π/f . We have

S(x, χ) =

N−1∑
n=1

(e−n
2x − e−(n+1)2x)χ1(n) + e−N

2xχ1(N) +
∑

n≥N+1

χ(n)e−n
2x

≥
N−1∑
n=1

(e−n
2x − e−(n+1)2x) + e−N

2x −
∑

n≥N+1

e−n
2x

= e−x −
∑

n≥N+1

e−n
2x

= e−x −
∑
n≥0

e−(N+1+n)2x ≥ e−x − e−(N+1)2x
∑
n≥0

e−2(N+1+n)x

=
e−xhN (x)

1− e−2(N+1)x
,

where hN (x) = 1− e−2(N+1)x − e−N(N+2)x is an increasing function of x > 0.
Hence, hN (x) ≥ hN (π/f) ≥ 0 for x ≥ π/f and we do have S(x, χ) ≥ 1 for
x ≥ π/f . �

To estimate the efficiency of Theorem 9.1, we computed Table 3. For a given
B, we give the number π′(B; 1, 8) of primes among the π(B; 1, 8) primes p ≡ 1

(mod 8) with p ≤ B for which Theorem 9.1 gives L(s,
(
•
p

)
) > 0 fort s > 0.

Hence, Theorem 9.1 applies to 41% of the primitive even Dirichlet characters
of prime conductors p ≡ 1 (mod 8) and p ≤ 109.
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Table 3

B π(B; 1, 8) π′(B; 1, 8) π′(B; 1, 8)/π(B; 1, 8) T
102 5 5 1 0sec
103 37 26 0.7027 · · · 0sec
104 295 197 0.6677 · · · 0sec
105 2384 1419 0.5952 · · · 0sec
106 19552 10463 0.5351 · · · 8sec
107 165976 80971 0.4878 · · · 3mn17sec
108 1439970 644451 0.4475 · · · 1h29mn19sec
109 12711220 5256723 0.4135 · · · 42h32mn57sec
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