• Title/Summary/Keyword: Numerical Computation

Search Result 1,367, Processing Time 0.03 seconds

Large Scale Unit Commitment Using Parallel Tabu Search (병렬 타부 탐색법을 이용한 대규모의 발전기 기동정지계획)

  • Kim, Hyeong-Su;Mun, Gyeong-Jun;Jo, Deok-Hwan;Hwang, Gi-Hyeon;Park, Jun-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.11
    • /
    • pp.528-536
    • /
    • 2001
  • This paper proposes a method of solving a unit commitment problem using parallel tabu search(PTS) approach. Tabu search is a heuristic optimization method that has the tabu list to control the search process. To improve the searching ability of a global solution, we used a method of exchanging solutions among connected processors as a diversification strategy, and to reduce the computation time, a new evaluating method was proposed which evaluates only a changed par. To show the usefulness of the proposed method, we simulated for 10 units system and 110 units system. Numerical results show improvements in the generation costs and the computation time compared with other conventional methods.

  • PDF

Free Vibration Analysis of Rectangular Plates by the Combined Transfer Stiffness Coefficient Method and Finite Element Method (전달강성계수법과 유한요소법의 조합에 의한 사각평판의 자유진동해석)

  • 문덕홍;최명수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.353-358
    • /
    • 1998
  • In general, we have used the finite element method(FEM) to find natural frequencies of plates. In this method, however, it is necessary to use a large amount of computer memory and computation time because the FEM requires many degrees of freedom for finding natural frequencies of plates correctly. Therefore it was very difficult to analyze the free vibration of plates correctly on personal computer. For overcoming this disadvantage of the FEM, the authors have developed the finite element-transfer stiffness coefficient method(FE-TSCM) which is based on the concept of modeling techniques in the FEM and the transfer of the stiffness coefficient in the transfer stiffness coefficient method. In this paper, we formulate free vibration analysis algorithm of rectangular plates using the FE-TSCM. Some numerical examples of rectangular plates are proposed, and their results and computation times obtained by the FE-TSCM are compared with those by the FEM and the finite element-transfer matrix method in order to demonstrate the accuracy and efficiency of the FE-TSCM.

  • PDF

Estimation of load and resistance factors based on the fourth moment method

  • Lu, Zhao-Hui;Zhao, Yan-Gang;Ang, Alfredo H.S.
    • Structural Engineering and Mechanics
    • /
    • v.36 no.1
    • /
    • pp.19-36
    • /
    • 2010
  • The load and resistance factors are generally obtained using the First Order Reliability Method (FORM), in which the design point should be determined and derivative-based iterations have to be used. In this paper, a simple method for estimating the load and resistance factors using the first four moments of the basic random variables is proposed and a simple formula for the target mean resistance is also proposed to avoid iteration computation. Unlike the currently used method, the load and resistance factors can be determined using the proposed method even when the probability density functions (PDFs) of the basic random variables are not available. Moreover, the proposed method does not need either the iterative computation of derivatives or any design points. Thus, the present method provides a more convenient and effective way to estimate the load and resistance factors in practical engineering. Numerical examples are presented to demonstrate the advantages of the proposed fourth moment method for determining the load and resistance factors.

Analysis of Signal Propagation in Nonlinear Optical Fiber using SS-FEM with Sparse Matrix (희귀행렬 SS-FEM에 의한 비선형 광섬유의 전송신호 해석)

  • Jeong, Baek-Ho;Lee, Ho-Jun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.1
    • /
    • pp.52-58
    • /
    • 2000
  • Signal propagation in nonlinear optical fiber is analyzed numerically by using SS-FEM (Split-Step Finite Element Method). By adopting cubic element function in FEM, soliton equation of which exact solution was well known, has been solved. Also, accuracy of numerical results and computing times are compared with those of Fourier method, and we have found that solution obtained from using FEM was very relatively accurate. Especially, to reduce CPU time in matrix computation in each step, the matrix imposed by the boundary condition is approximated as a sparse matrix. As a result, computation time was shortened even with the same or better accuracy when compared to those of the conventional FEM and Fourier method.

  • PDF

The Linearized Four-point Method of Characteristics for Unsteady Flow Computation (선형 4점 특성법에 의한 부정류의 해석)

  • 이종태;이원환
    • Water for future
    • /
    • v.15 no.4
    • /
    • pp.39-44
    • /
    • 1982
  • A numerical computation of unsteady flow in the open channel was studied with the linearized four-point method of characteristics. A seiche test for this model was fulfilled and its result was very close to the exact solution. The effect of linearization to the accuracy of the result was small enough for the analysis of nearly horizontal flow, and this model would be applicable for the real unsteady flow problem because of its convenience.

  • PDF

Multi-stage Inverse Finite Element Analysis of Rectangular Cup Drawing considering Sliding Constraint Surfaces with Arbitrary Intermediate Die Shapes (임의 곡면의 금형형상이 고려된 미끄럼 구속면을 이용한 직사각컵의 다단계 유한요소 역해석)

  • Kim S. H.;Kim S. H.;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.158-161
    • /
    • 2000
  • An inverse finite element approach is employed for more capability to design the optimum blank shape from the desired final shape with small amount of computation time and effort. For multi-stage deep-drawing processes, numerical analysis is extremely difficult to carry out due to its complexities and convergence problem as well as tremendous computation time. In this paper, multi-stage finite element inverse analysis is applied to multi-stage rectangular cup drawing processes to calculate intermediate blank shapes and strain distributions in each stages. Finite element patches are used to describe arbitrary intermediate sliding constraint surfaces.

  • PDF

An Algorithm for Optimal Allocation of Spare Parts

  • Jee, Man-Won
    • Journal of the military operations research society of Korea
    • /
    • v.9 no.1
    • /
    • pp.29-49
    • /
    • 1983
  • The algorithm developed in this paper utilized kettelle's [1] idea of the undominated allocation sequence and his way of tableau computation to solve the more general spares allocation problem in the system availability optimization. The algorithm is to optimally allocate resources to the independent modules which are connected to be series/parallel/mixed system configurations. It has advantages over the standard dynamic programming algorithm by eliminating the need for backtracking and by solving the allocation problem for any budget size. By careful heuristic inspection the algorithm can be made very efficient for manual calculations because large blocks of cells can be eliminated from computation. A numerical example is provided to illustrate the allocation algorithm.

  • PDF

Evolutionary Computation Approach to Wiener Model Identification

  • Oh, Kyu-Kwon;Okuyama, Yoshifumi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.33.1-33
    • /
    • 2001
  • We address a novel approach to identify a nonlinear dynamic system for Wiener models, which are composed of a linear dynamic system part followed by a nonlinear static part. The aim of system identification here is to provide the optimal mathematical model of both the linear dynamic and the nonlinear static parts in some appropriate sense. Assuming the nonlinear static part is invertible, we approximate the inverse function by a piecewise linear function. We estimate the piecewise linear inverse function by using the evolutionary computation approach such as genetic algorithm (GA) and evolution strategies (ES), while we estimate the linear dynamic system part by the least squares method. The results of numerical simulation studies indicate the usefulness of proposed approach to the Wiener model identification.

  • PDF

On Development of Vibration Analysis Algorithm of Beam with Multi - Joints(II) (다관절 보의 진동해석 알고리즘 개발에 관한 연구 (II))

  • 문덕홍;최명수;홍숭수;강현석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.3
    • /
    • pp.256-266
    • /
    • 1997
  • The authors apply the transfer influence coefficient method to the 3. dimensional vibration analysis of beam with multi - joints and formulate a general algorithm to analyse the longitudinal, flexural and torsional coupled forced vibration. In this paper, a structure which is mainly found in the robot arms, cranes and so on, has some crooked parts, subsystems and joints, but has no closed loop in this system. It is modeled as the beam of a distributed mass system with massless translational, rotational and torsional springs in each node, and joint elements of release or roll at node which the displacement vector is discontinuous. The superiority of the present method to the transfer matrix method in the computation accuracy was confirmed from the numerical computation results. Moreover, we confirmed that boundary and intermediate conditions could be controlled by varying the values of the spring constants.

  • PDF

Integrated CFD on Atomization Process of Lateral Flow in Injector Nozzle

  • Ishimoto, Jun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.7-8
    • /
    • 2006
  • The governing equations for high-speed lateral atomizing injector nozzle flow based on the LES-VOF model in conjunction with the CSF model are presented, and then an integrated parallel computation are performed to clarify the detailed atomization process of a high speed nozzle flow and to acquire data which is difficult to confirm by experiment such as atomization length, liquid core shapes, droplets size distributions, spray angle and droplets velocity profiles. According to the present analysis, it is found that the atomization rate and the droplets-gas two-phase flow characteristics are controlled by the turbulence perturbation upstream of the injector nozzle, hydrodynamic instabilities at the gas-liquid interface, shear stresses between liquid core and periphery of the jet. Furthermore, stable and a high-resolution computation can be attained in the high density ratio (pl/ pg = 554) conditions conditions by using our numerical method.

  • PDF