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ABSTRACT

The algorithm developed in this paper utilized kettelle’s [1] idea of the undomi-
nated allocation sequence and his way of tableau computation to solve the more general
spares allocation problem in the system availability optimization. The algorithm is to
optimally allocate resources to the independent modules which are connected to be
series/parallel/mixed system configurations. It has advantises over the standard
dynamic programming algorithm by eliminating the need for backtracking and by
sdlving the allocation problem for any budget size. By careful heuristic inspection the
algorithm can be made very efficient for manual calculations because large blocks of
cells can be eliminated from computation.

A numerical example is provided to illustrate the allocation algorithm.

1. Introduction

Various authors have considered resource allocation of sapres (parallel redundancy) in order to
maximize system reliability with a budget constraint. Moskowitz and McLean [11] used a variational
method to optimize redundancy. Burtion and Howard [4] and Bellman and Dreyfus [3] solved
the problem uéing dynamic programming. Kettelle [8] developed a heuristic algorithm from dynamic
programming and that was extended by Proschan and Bray [13] to allow for multiple constraints.
Ghare and Taylor [6] used a branch-and-bound procedure; Mizukami [10] used convex integer
programming, and Tillman and Liittschwager [17] maximized reliability subject to several con-
straints using an integer programming formulation. Everett [5] used the generalized Lagrange
multiplier method to solve the same problem discussed by Kettelle., Sharma and Venkateswaran
[14] and Nakagawa and Nakashima [12] developed intuitive algorithms that provide approximate
solutions. In all of those cases the system consists of components in series with parallel redundancy.
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Aggarwal [1], and Kuo, Hwang, and Tillman [9] develop heuristic methods for optimal system
reliability for more complex systems. Other papers [15] and [16] have attempted to determine
stock levels for components in order to maximize equipment operational availability subject to
a budget constraint. For their purposes operational availability for an equipment is calculated using
the definition

MTBF
MTBF + MTTR + MSRT

where MSRT is the mean supply response time. Since MTBF and MTTR are unaffected by the
number of spares, the models really minimize mean supply response time. The method they use
is a Lagrange multiplier approach with an embedded dynamic programming technique.

In the regearch summarized above there have been many approaches to solving resource alloca-
tion problems using various mathematical programming techniques and considering different types
of resource constraints. Our spares allocation problem could also be solved several different ways.
The system availability objective function does not possess the required characteristics (linear,
convex, concave) that allow the use of some of the specialized programming techniques. It is,
however, separable and monotone in the decision variables (the numbers of spares) and the con-
straints are linear. Therefore, solution techniques like dynamic programming or heuristic methods
can be applied.

None of the algorithms described above were developed for the availability allocation problem
that we address. However, there are similarities that we can exploit. In the next section we present
an allocation algorithm for the availability problem that extends the results obtained by Burton
and Howard [4] and Kettelle [8].

2. The Allocation Algorithm

Consider a weapon system with k components, and let n; be the number of spares allocated
to component i for i = 1, 2, ..., k. Let L; and U; be lower and upper bounds on the number of spares
for component i and let n = (ny, n,, ..., ny) be the vector of spares allocation for the k components.
Finally, let ¢(n) be the total cost for the allocation n and B the upper bound on the dollars available
for allocation. The mathematical problem we address is

max A(n)(t)

subject to  c(n) <B (2-1)
LSy S
i=1,2,..,k

where A(®) (t) is the system point availability with allocation n.
The mathematical programming problem (2-1) has little in the way of special structure in the
objective function which allows the use of various efficient linear or nonlinear programming algo-
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rithms. However the system availability does possess a separability and monotonic structure that
allows the use of dynamic programming methods. The solution technique that we derive is based
on Kettelle’s reliability redundancy allocation algorithm [8].

Kettelle provides an easily usable algorithm for obtaining an exact solution for maximizing the
reliability of a parallel redundancy series system subject to a budget constraint. His algorithm
generates undominated redundancy allocations (or dominating sequence of allocations) for successive-
ly larger subsystems from undominated allocations for smalf subsystems.

To understand the concept of “an undominated allocation” the following definition is intro-
duced [2].

Definition : n° is undominéted (or dominating) if
A®) > A@ )y implies o(n) > ¢(n°)
whereas
A(n)(t) = A(no)(t) implies either c(n) > c(n®)
or c¢(n) = c(n®)
where

n={n; n,, .., nN).

Kettelle confined his algorithm to series-type systems. Burton & Howard [4] showed that the
allocation problem can be solved by dynamic programming for any system configuration composed
of a mixture of series and parallel connections. They developed a computer algorithm for this
problem and demonstrated that the dynamic programming method works very well for complex
systems.

The Burton-Howard recursive dynamic programming algorithm can be improved computationally
by introducing Kettelle’s idea of undominated sequences and his tableau computation methods.
The algorithm which we develop for optimizing system availability adapts features of both the
Kettelle algorithm and the Burton-Howard algorithm and results in an algorithm which is computa-
tionally efficient. The result solves the allocation problem not only for the budget B, but also for
all budgets B’ < B. This is important since in real world applications the budget B itself is not always
known precisely at the time of solution. We describe the algorithm in the following material. We
assume that the computational formulae derived in [7] are used to evaluate component availability
and that the system configuration is known. A numerical example is provided in Section 3.

The steps of the availability allocation algorithm are described below. Since the algorithm
was generated out of a dynamic programming solution, it is not necessary to prove optimality.
(Proofs are available from the Kettelle and Burton-Howard references.) Where we have made modifi-
cations of the previous results to reduce the number of decision alternatives at a given point, we
prove that the modifications cannot result in inferior solutions.

The Algorithm

Define the N stages (N < k) to consist of the independent system entities. These entities can
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be the individual components if they operate independently or modules composed of dependently
operating components. Let ai(ni) be the availability (for convenience we drop reference to time t
even though there is still a specific time t in which we are interested) for the independent entity

=1,2,. ' ‘ :

1) Compute the stage return, a,(nl) for stage i for I; < n; < U;. This calculation utilizes
computational formulae in [7]. '

2) Formulate the N-stage return function using the availability calculus for independent series/
parallel configurations. Burton and Howard show that the problem can always be formulated so that
separability and monotonicity are satisfied for any series/parallel mixed system configuration

provided the entities are independent.
3) Set up a tableau such as that shown in Tables 2.7 for the two-stage problem. The entries

in the row headings correspond to the triple, (n, ,n;c;,and al(nl )) the entries in the column heading
correspond to (ny,n5c, ,az(n2)). The entries in the body of the table give the allocation (n,,n,),
the cost ¢(ny,n,) and the two-stage return (availability). ,

4) Start with (1,1) as the first element in the sequence of undominated allocations for the
subsystem consisting of stages one and two,

5) Select as the next member of the sequence of dominating allocations the cheapest cost
entry with availability higher than the previous element of the sequence. (We discuss later some
methods of eliminating entire blocks of possibilities from consideration.)

6) After proceeding through a given tableau in the above manner, increase the problem to a
3-stage return using the undominated allocations from the previous 2-stage problem as the row
entries and (n3,c3(n3),a3(“3)) as the column entries. Obtain the dominating allocations for this
subsystem consisting of stages 1, 2, and 3 as before. _ ‘

7) In general, for the N-stage problem, use as the row elements ((ny ,n,, ..., nn.1), c(n; ;n,,
iy ), A2, < nN-1)) and as the column elements (ny,c(ny), a™N) and step through selecting
a sequence of dominating allocations by taking the cheapest cost entry with availability higher
than the previous value,

Note that if c;; and a;; represent the cost and availability of cell (i,j), and if cell (ij) is a member
of the optimal sequence, then the next member of the optimal sequence must be located in the
region represented as quadrant I or III in Figure 2.1 below. ‘

n I

I Iv

Fig. 2.1 Definition of quadrant I, II, III, IV
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The tableau method used in this algorithm has the following advantages:

1) It does not need backtracking procedures which are used in the standard dynamic program-
ming algorithm,

2) It does not need extra calculations for the changes of budget level. Since we can read off
Figure 2.3, the allocation and availability for each level of the budget ranges from O to 50.

3) It is efficient especially for manual calculations. As we could see in the tables (Tables 2.7 ~
2.11) we do not need to fill out every cell of the tables. Heuristic inspection of some of the cells
allows the user to eliminate large blocks of cells. As an example, suppose, in Table 2.9, we have
just computed elements of the cell (9,7) of the table 2.9 which shows allocation (3,4,0,0,8), cost
17.4 and availability 0.6336, and we found out that this allocation should currently be included
in the undominated sequence according to the Sth criterion of this algorithm, then we know that
we have already considered all the elements of the cells above the solid line in Table 2.9, all of which
have costs less than 17.4. So in the next calculations, we may try the entries in several cells in
quadrant I or III for the possible elimination of entire blocks. Suppose for example we compute
the availability in the cell (19, 5) of Table 2.9 which we found to be 0.5966 (lower than 0.6336)
with cost 24.6 (higher than 17.4), then we do not need to consider cells which are contained in the
shaded area (“North-West Corner” elimination rule). This is because cost and availability of the
cell (19,5) of Table 2.9 are maximal among those of the cells contained in the shaded area (cost and
availability in the cell (i) of the table are increasing in i and/or j), and thus every cell in the shaded
area has lower availability with higher cost than those of cell (9,7) which is the current element
in the dominating sequence.

In those stages where cumulative stage returns are computed from series connections, the
remainder of an entire row or column can sometimes be rejected as dominated. Let c;, and a;,
represent the cost and availability of the entry heading row i. If a;; > aj,, where i’ < i, all entires
in row i’ which cost more than cj; are dominated because a;; > ayr, > ajrx k2> 1. The second in-
equality follows because ay, = ajro a0k Where ag <[,k = 1,2, ... The same is true for columns.
As an example, note that in Table 2.7 cell (2,2) (cost 5.4, availability 0.330135) dominates every
cell in the first row starting with (1,4) since a;, =-0.330135 > a;, = 0.2865 > ay, (k >1), and
Cyg =5.4< 14, €23,

In those stages where cumulative stage returns are computed from parallel connections there
seems to be noclear cut rule of elimination other than the “north-west corner elimination rule”,
ie., try several cells heuristically in quadrant I and III, if airy < a;j then we eliminate from further
consideration cell (£,m) such that £ <i' and m<j'.

3. An Example

As an illustration consider the system configuration shown in Figure 2.2 and the data in Table
2.1. 8Solve the following problem.
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7

Fig. 2.2 System configuration for example problem

Table 2.1 System Data

Failure |Recovery | Upper | Number of .
Rate | Rate Cost " | Bound | Spares |Availability| gperating Rule
Componen? w|lo |9 o @@
1 1 .
@ 80 7 14 7 n; a scenario 1
010, N 1
50 3 1.3 7 n, ay spares not shared
@ ! 1 LS 4 n scenario 2
50 2 ' 3
@ @ a34
@ 41—0 —é— 1.2 6 ng spares not shared
1 1 scenario 2
@ @ 50 4 1.0 8 fis6 3s6 spares shared
1 1 scenario 1
@ 40 2 1.4 ? fl78 d78 spares shared

Scenario 1 :

Scenario 2 :

The surviving component continues in service, and if it fails, its replacement

begins immediately and proceeds independently and concurrently with the

replacement of the other failed component. All failed components resume

operation as soon as they are replaced.

The surviving component is shut down until replacement of the failed component

is accomplished.
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The problem is:

max A®()
st. no°c <_B

for t = 90, B is flexible between 40 and 50.

Solution: For this problem the availability is given by
A(nl,nz,na,m; MNseN7g) = | [1_378(1'178)] {1_356(1156)

- 1—(1—a34(n3’n4)Xl—a(n1)a2(nf))]}

which is separable since it can be written as
A(nl M2,03,04,1 56’n78) = 3780 8560 434 0 23 0 a4
where “0” represents the composition operator.

We seek

A(B) = max A(01:12,03,04.056,0178)
n

st. nec <B
0L n1_<_Ui

Let ai(ni) be the stage return and A;(X;) be the maximum i-stage return.
For stage 1,

A;(X}) =max al(nl)
ny

s.t. OS nIS 6

0 SCIHIS Xl
For stages 2,3,4 and 5

A,(X;) = max az(n2)'A1(X2—n2c2)
np
st.0<n, <6

0 gl’lzCz S Xz

Asa(X34) = max  1—[1—az (314)] [1-Ay(Xsq —n3c3—n4c g)]

N3 ,ng
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N

st. 0<n3< 3

<
Ty _<_ ng (2-5)

A

0

n3Csz + NngCq S X34

As6(Xs56) = max a56("56)-A34(X56 —Cs6Ns6)
Nse

st. 0< ng<6 (2-6)
0 <csense < Xse

A 15(X78) = 1 —min [1—a7s(n78)] [1-A5¢(X78 —C 78N 78)]
N8

st. 0<n.g <7 27
0 30781'178 < X78 =B

The stage returns (ai(ni)) are computed from the formulas in (7) and the computation results are
listed in Tables (2.2 - 2.6). Here n; is the total number of parts (original plus spares for component
i).

At stage 1 and 2, from Eq. (2-3) and Table 2.2 the maximum return from stage 1 is
Ay(njcy) = al(nl)

To obtain a complete sequence of undominated allocations for the subsystem consisting of stages 1
and 2 according to recursive Equation (2-4), we set up Table 2.7. The entires in the body of the
Table (2.5) give the spares, (vector of two elements), cost, and availability for the subsystem consist-
ing of stages 1 and 2. Thus, the entry (2,3) corresponds to n; = 2 and n, = 3 with cost 6.7 achieving
subsystem availability 0.495725. The chosen elements connected by arrows form an undominated

Table 2.2 Stage return from stage 1 Table 2.3 Stage return from stage 2
n, nycy al(nl) n, n,c, az(ﬂz)
1 14 0.2865 1 1.3 0.1889
2 2.8 0.6476 2 2.6 0.5098
3 4.2 0.8565 3 3.9 0.7655
4 5.6 0.9305 4 5.2 0.8929
S 7.0 0.9379 5 6.5 0.9377
6 84 0.9412 6 7.8 0.9495
7 9.8 0.9417 7 9.1 0.9519
S oo 0.9524 oo oo 0.9524
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sequence of allocations.
The elements of the sequence are chosen in the following way.
1) Start with (1.1), the first undominated allocation.
2) The next undominated allocation is the cheapest cost entry with availability higher than

that of previous allocations.

Table 2.4 Stage return from stage 3

1,
[ 4] 1 2 3 4 5 6
[ 3\ Jee 1.2 24 36 48 6.0 7.2
nsC3
1 1D (1,2) (1,3) 1,4
QD GD 6.3
1.5 0.0111 0.0418 0.0802 0.1116
2 (2,1) (2,2) (2,3) (24)
2 | D@D gD
3.0 0.0350 0.1271 0.2409 0.3315
3 B ERY) (3.2) (3.3) G4 (3.5)
5.7 6.9 ED—— Q. — >
4.5 0.0595 0.2120 0.3968 0.5407 0.6213
4 (4,4) (4.5 (4,6)
55—+ —| -T2
6.0 0.7160 0.8124 0.8533
Table 2.5 Stage return from stage 4 Table 2.6 Stage return from stage 5
fisg f56C56 ﬂss(n“) 78 f78C7g 378(n78)
2 2.0 0.01832 i 2 2.8 0.0079
3 3.0 0.1034 3 4.2 0.0426
4 4.0 0.2723 4 5.6 0.1300
5 50 0.4854 5 7.0 0.2741
6 60 | 06617 6 8.4 0.4483
7 7.0 0.7747 7 98 0.6133
8 [ 8.0 0.8285 8 11.2 0.7410
9 12.6 0.8238
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Table 2.7 Sequence of max return from stage 1,2

a, 1 2 3 4 5 6 7
1.3 2.6 3.9 5.2 6.5 7.8 9.1
a, 0.1889 0.5098 | 0.7655 | 0.8929 | 0.9377 | 0.9495 | 0.9519
1 (1,1) (12) (13)
1.4 QDTG0 ++GD 6.6
0.2865 0.0541 0.1461 | 02193 | 0.2558
2 (2,2/ (2,3) (2,4) (2,5)
2.8 4.1 G D—1 GO 9.3
0.6476 0.1223 0.3301 | 0.4957 |0.5783 | 0.6072
3 (3.3 (3,4) (3,5)
4.2 ‘ ~*~;’
0.8565 0.6556 | 0.7648 | 0.8031
4 (44 (4,5) (4,6) 4,7)
5.6 0.8 ——»@——-~—»"
0.9305 0.8309 | 0.8725 | 0.8835 | 0.8858
5 (5,6 (5,7)
7.0 4.9—~6.
0.9379 0.8906 8928
6 (6.,6) (6,7)
8.4 6.0—A7>
0.9412 0.8937 ﬂ).s%o
7 (1,7
9.8 11.1 124 13.7 15.7 16.3 17.6
0.9417 0.1779 0.4800 | 0.7208 | 0.8408 | 0.8830 | 0.8941 | 0.8964

These procedures are consistent with the Burton-Howard algorithm (Table 2.8). The sequence
of undominated allocation in Table 2.7 shows that if we have 15 as our budget for this two-
component subsystem then we allocate ny = 5 and n, = 6 with cost 14.8 achieving availability

0.89055, if B = 20 then n = (7,7) with cost 19.9 achieving 0.8964 and so forth.

At stage 3, component #3 and #4 form a two-component series subsystem which operates
under scenario 2 with spares not shared. The stage returns are computed from the formula (4-22)
and (4-23) in [7] and listed in Table 2.4. The sequence of undominated allocations is marked by

arrows also in Table 2.4. From recursive equation (2-5) we obtain a sequence of undominated

allocations for the subsystem consisting of component #1, #2, #3 and #4 by using the undominated

allocations of stage 1,2 and the undominated allocations of stage 3 which is shown in Table 2.9.
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Table 2.8 Sequence of max return from stage 1,2 using standard dynamic
programming method

c, =14 d, Xy dy
¢ =13 X, -
13 14
X3-o(d3)
Xy | d c(dz) az Xy dy Ay ayA; A,
11 o0 0 0 1 0 0 0 0
0 0 0 2 1 0 0 0
2 13 1889 07 | o 0 0
0 0 0 3 2 | 6476 0 ,
30 (@ | 13 | ass9 | 17 | ()| 2865 | 00541
2 26 5098 04 | 0 0 0 with cost 2.7
0 0 0 4 2 | 6476 0
1 13 1889 27 1 | 2865 | 00541
¢ @) | 26 5098 14 | (D | 2865 | 1461
3 3.9 7655 0.1 0 0 0 with cost 4.0
0 0 0 5 3 | 8565 0
1 13 1889 3.7 2 | 6476 | 1223
> @ | 26 5098 24 | (D) | 2865 | .14
3 3.9 7655 11 0 0 0 with cost 4.0
0 0 0 6 4 | 9305 0
1 13 1889 a7 | 3 | 8565 | 1618
6 | (D | 26 | 508 | 34 | (2| 6476 | 3301
with cost 5.4
© 39 7655 21 [ (1) | 2865 | 2193
with cost 5.3
4 52 8929 0 0 0

0.8
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At stage 4, since component #5 and #06 operate under scenario 2 with spares shared by both
components, the payoff function a56(n56) which is computed from formula (4-27) and (4-28) in
[7] and listed in Table 2.5 is the availability of the module which is an independent entity.

According to the recursive equations (2-6) we obtain a sequence of undominated allocations
for the subsystem consisting of components #1, #2, #3, #4, #5, and #6 by using the undominated
allocations of stages 1, 2, 3 and the sequence of payoffs from stage 4 (component #5, #6). Table
2.10 shows this isequence, and Table 2.11 shows final allocations according to the recursive equations

2

-7) in a similar fashion.
From the final table (2.11) we can construct the following graph which shows allocation and

availability for each level of budget which is flexible ranging from 40 to 50.

If we would like to have a system availability of 0.900 then we would need only a budget of

26.7 consumed by allocating (n;,n,y.nj3ng,ngefiqg) = (3,3,0,0,6,9). Figure 2.4 is the graphical
representation of Table 2.11.
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Table 2.9 Sequence of Max Return from Stage 1, 2, 3

N (o.o[Crdtn Ch3X (3002 e X (2|3, 2)[(3,2)[(a4)[(a,5)[(4.6)

)

Q.
AN e 2.1 3.3 5.1 5.4 €8 | 7.8 8.1 53 105 103 | 120 | 132
N s.6 lagui]oec4/3isogolllio 27/|02493[0.33/510.2968(05427/0423/310.7/69|08/24i0.3533

(0.0) [(0.0.040,0.111(0,012) 013X (00.224(00 231(0025](0.0.33)(0034]002353(00441(0.045)(594 5]

0 @ 27 | 3.9 51 | 6% | ¢s 7.3 810 | 93 | ses| r68 | s20 | sa2
0.0 0.0 oottt la.041810.9%02 0,437/ |e.242310.3315 | 0.4968{0540714.621310.7/6219-813410.9933

vy LrrloodCo ¢ 203X/ 1,2.2)
21 @ 1.4 6.5 78 8.1 3-3 785 18 /3.9 /3.2 | /3.5 9.7 | 453

0-254110.054/10.9648{0.0937| 64299161743 ¢. 222 0429 65408 0.7373
Clo2) X0, 2e0X(s3 11X 1343 '

40 T | 67 | 79| 20| 54 145 | /4.8 172
2.043) Yo /381101555 0.28/7 o w_}z.“ 0.3747
(i-3) (/,S'Top)

v

53 | @D 8o | 32 . /g 19.x
0.2153 4. z¥95 0.228 | 0.12530 9-3354
(2. 2} 2280] <£

)(.zéecu /\(az..J
s+ | &= 8-t 3.3 /4.7 7.4 V3.
0-130i|0-338/ |0.3378] 0.353 /0-3115_ Y

2 344

(2,3)j(%320) (2,345
87 | @D 94 | res 145 | 148 EP-+55 2
3240

03357 0.4357) 0.50/3 1 0.5/58 0.94;54
(2.4)[(2502) / [24450(2444)

8.0 @ SRR 144 28.0 ?E
0.5783|0.5783]6.5823| 02349 / 0-32{ald9B8 1

(3.3)[(320) (334503346
8.1 | @D | /o8 )38 | 1+7 LMY,
525510, 65541 0.653% 0-33454 4335

- -~ T
a4 nazz] (34 s3(3440)
3.4 . 12y 133 (45 J - haky
(3.5)|(3.509) / b} YTE
707 | 7o /2.4 | /4.8 —
21 1oz 234 423D
0.8031 {8.343/ 14.5043 POV A

(4.8)](4 sioe) ELIARILE
0.3 @ 13.5 5.y / (4-‘-:‘75(4_‘!-_6}

0-363310.3752

(53309 / (e327(4346]
124 | @=D| 148 a3 B
0.3725} 0.917:51 9-3739 / 1590, ";’9\;735)
(+.6)[(+429) . 25503
134 13D /6 /7.3 18.5 254 2%?‘

a-37§1 d-ﬂ}é

£.993510.883510.6325] 0.8884| 0.3928
0

267 | 55

¢.978610-3832
e
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Table 2.10 Sequence of Max Return from Stage 1, 2, 3, 4

AN C'\ss 5 é 7 -
A\ §.0 §-0 rx- .0
1238 N 0.4854 | 0.6617 | 07747 |0.8285
(6,0,0,0)
2
8. 0
(1,1,0,0) (17.0.6,43(1/.0.0.5 )

3.7 >62 > @2 &7
g-054al 2-00 457 /ﬁfg f 22283 29358
ts,200) 6043 7.2.005)(02.006]

4.0 | é D /@ /7.8
. /462 a.oﬂo_‘/ 4.9, § 0./73
{7.3.0,0) ) 0,5]/

5.3 é- 7¢-3
8.2193 / /a4 os25/

(2,2,0,0) 4)9(2.’2. 5,05 J(22,006)(220.0.7)

5.4 Ty —— 2. /3.4
1 0-3250) 2-/F5 03 e __g;/, 3558 | 431238
(2,3,0.0) (230,035 X0 23646102 3,007)
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4. Conclusions

The algorithm developed in this paper can be easily used by logistic practioners who do not

possess highly mathematical backgrounds to balance the number of spare parts for the components

of their weapon systems. Additional research might be fruitful about the development of a computer

program to automate the allocation algorithm. A computer program for implementing the algorithm

would be easy to develop if the program is to ignore the computational advantages offered by the

“elimination rules”. A program which systematically searches for an opportunity to eliminate

blocks of possibilities from consideration would be more efficient; albeit more difficult to develop.
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