• 제목/요약/키워드: Numerical Computation

검색결과 1,367건 처리시간 0.027초

경계요색법(境界要索法)에 의한 투과잠제(透過潛堤)의 해석기법(解析技法) (Permeable Breakwaters Analysis by Using Boundary Element Method)

  • 김남현;淹川淸;최한규
    • 산업기술연구
    • /
    • 제10권
    • /
    • pp.69-72
    • /
    • 1990
  • In this paper the numerical method for the study of wave reflection from and transmission through submerged permeable breakwaters using the boundary element method is developed. The numerical analysis technique is based on the wave pressure function instead of velocity potential because it is difficult to define the velocity potential in the each region arising the energy dissipation. Also, the non-linear energy dissipation within the submerged porous structure is simulated by introducing the linear dissipation coefficient and the tag mass coefficient equivalent to the non-linear energy dissipation. For the validity of this analysis technique, the numerical results obtained by the present boundary element method are compared with those obtained by the other computation method. Good agreements are obtained and so the validity of the present numerical analysis technique is proved.

  • PDF

병렬 컴퓨터에서 다중블록 유한체적법을 이용한 비압축성 유동해석 (Numerical Prediction of Incompressible Flows Using a Multi-Block Finite Volume Method on a Parellel Computer)

  • 강동진;손정락
    • 한국유체기계학회 논문집
    • /
    • 제1권1호
    • /
    • pp.72-80
    • /
    • 1998
  • Computational analysis of incompressible flows by numerically solving Navier-Stokes equations using multi-block finite volume method is conducted on a parallel computing system. Numerical algorithms adopted in this study $include^{(1)}$ QUICK upwinding scheme for convective $terms,^{(2)}$ central differencing for other terms $and^{(3)}$ the second-order Euler differencing for time-marching procedure. Structured grids are used on the body-fitted coordinate with multi-block concept which uses overlaid grids on the block-interfacing boundaries. Computational code is parallelized on the MPI environment. Numerical accuracy of the computational method is verified by solving a benchmark test case of the flow inside two-dimensional rectangular cavity. Computation in the axial compressor cascade is conducted by using 4 PE's md, as results, no numerical instabilities are observed and it is expected that the present computational method can be applied to the turbomachinery flow problems without major difficulties.

  • PDF

2차원 강소성 유한요소해석에서의 안정성 및 효율성 향상에 관한 연구

  • 박근;양동열
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 추계학술대회 논문집
    • /
    • pp.195-199
    • /
    • 1993
  • In the analysis of metal forming processes by the finite element method, there are many numerical instabilities such as element locking, hourglass mode, shear locking. These instabilities may have a bad effect upon accuracy and convergence. The present work is concerned with improvement of stability and efficiency in two dimensional rigid-plastic finite element method using various type of elements and numerical integration schemes. AS metal forming examples, upsetting and backward extrusion are taken for comparison among the methods : various element types and numerical integration schemes. comparison is made in terms of stability and efficiency. As a result, it has been shown that the finite element computation is stabilized from the viewpoint of computational time, convergency, and numerical instability.

  • PDF

WKB 방법에 의한 일차원 완경사 파랑식의 해석해 (An Analytical Solution of One Dimensional Mild Slope Equation by the WKB method)

  • 서승남
    • 한국해안·해양공학회논문집
    • /
    • 제20권5호
    • /
    • pp.461-471
    • /
    • 2008
  • WKB 방법에 의한 일차원 완경사 파랑식의 해석해를 유도하였고 이는 Porter(2003)의 해와 유사한 형태를 갖는다. 적용적 측면에서 본 해석해는 관련 수치해에 견줄 만큼 해석상의 일반성을 갖는다. 유도과정에서 해면함수로 표현된 굴절 방정식의 해도 얻었다. Bremmer 방법을 이용한 본 해석해에 대한 수치계산 결과를 제시하였고 이들은 기존 결과와 일치한다.

큰 받음각을 갖는 세장형 물체 주위의 점성 유동장 수치 모사 (Numerical Simulation of Asymmetric Vortical Flows on a Slender Body at High Incidence)

  • 노오현;황수정
    • 한국전산유체공학회지
    • /
    • 제1권1호
    • /
    • pp.98-111
    • /
    • 1996
  • The compressible laminar and turbulent viscous flows on a slender body in supersonic speed as well as subsonic speed have been numerically simulated at high angle of attack. The steady and time-accurate compressible thin-layer Navier-Stokes code based on an implicit upwind-biased LU-SGS algorithm has been developed and specifically applied at angles of attack of 20, 30 and 40 dog, respectively. The modified eddy-viscosity turbulence model suggested by Degani and Schiff was used to simulate the case of turbulent flow. Any geometric asymmetry and numerical perturbation have not been intentionally or artificially imposed in the process of computation. The purely numerical results for laminar and turbulent cases, however, show clear asymmetric formation of vortices which were observed experimentally. Contrary to the subsonic results, the supersonic case shows the symmetric formation of vortices as indicated by the earlier experiments.

  • PDF

$45^0$의 rib이 설치된 채널에서의 열전달과 유동특성의 실험 및 수치해석 (Experimental & Numerical Investigation for Heat Transfer and Flows in a $45^0$ Inclined Ribbed Square Channel)

  • 강호근;안수환;김명호
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 후기학술대회논문집
    • /
    • pp.178-179
    • /
    • 2005
  • Numerical and experimental investigation of incompressible turbulent flow and heat transfer through square channels with varying number of ribbed walls were conducted to determined pressure drop and heat transfer. The CFX solver used for the computation. The rough walls have a $45^0$ inclined square rib. Uniform heat flux is maintained on whole inner heat transfer channel area. The numerical results agreed well with experimental data that obtained for 7600$D_h$) of 0.0667. The results show that values of local heat transfer coefficient and friction factor increase with an increasing number of ribbed walls.

  • PDF

과도 선형 동탄성 문제의 시간영역 유한요소해석 (A Time-Domain Finite Element Formulation for Transient Dynamic Linear Elasticity)

  • 심우진;이성희
    • 대한기계학회논문집A
    • /
    • 제25권4호
    • /
    • pp.574-581
    • /
    • 2001
  • Transient linear elastodynamic problems are numerically analyzed in a time-domain by the Finite Element Method, for which the variational formulation based upon the equations of motion in convolution integral is newly derived. This formulation is implicit and does not include the time derivative terms so that the computation procedure is simple and less assumptions are required comparing to the conventional time-domain dynamic numerical algorithms, being able to get the improved numerical accuracy and stability. That formulation is expanded using the semi-discrete approximation to obtain the finite element equations. In the temporal approximation, the time axis is divided equally and constant and linear time variations are assumed in those intervals. It is found that unconditionally stable numerical results are obtained in case of the constant time variation. Some numerical examples are given to show the versatility of the presented formulation.

수평가진을 받는 직사각형 용기 내 2차 유동의 실험적/수치해석적 연구 (Experimental/Numerical Study on a Secondary Flow within a Rectangular Container Subjected to a Horizontal Oscillation)

  • 변민수;서용권
    • 대한기계학회논문집B
    • /
    • 제26권7호
    • /
    • pp.1014-1021
    • /
    • 2002
  • Analysis of two-dimensional secondary flows given by an oscillatory motion of a liquid with a free surface in a rectangular container subject to a linear reciprocating force is performed by numerical and experimental methods. FVM is used for the numerical computation of the two-dimensional flows. We considered the effects of the free-surface properties such as the surface tension and the dilatational viscosity. The boundary-layer analysis as well as an experiment is used in establishing the free surface properties. The secondary flow patterns are visualized by a laser sheet. It is shown that the secondary flow patterns predicted by the numerical methods are in good agreement with the experimental results.

Numerical Study of Inlet and Impeller Flow Structures in Centrifugal Pump at Design and Off-design Points

  • Cheah, Kean Wee;Lee, Thong-See;Winoto, S.H.
    • International Journal of Fluid Machinery and Systems
    • /
    • 제4권1호
    • /
    • pp.25-32
    • /
    • 2011
  • The objective of present work is to use numerical simulation to investigate the complex three-dimensional and secondary flow structures developed at the inlet and impeller in a centrifugal pump at design and off-design points. The pump impeller is shrouded with 6 backward swept blades and with a specific speed of 0.8574. The characteristic of the pump is measured experimentally with straight and curved intake sections. Numerical computation is carried out to investigate the pump inlet flow structures and subsequently the flow field within the centrifugal pump. The numerical results showed that strong interaction between the impeller eye and intake section. Secondary flow structure occurs upstream at the pump inlet has great influence on the pump performance and flow structure within the impeller.

Numerical Analysis of Solid Propellant Ignition ~Numerical Formulation Assessment~

  • Shimada, Toru;Novozhilov, Boris V.
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.528-531
    • /
    • 2004
  • For a simple one-dimensional ignition problem a mathematical model is described to investigate the difficulties in numerical simulations. Some computation results are obtained and comparison is made with analytical solution. Discussions are made on topics such as 1) coordinate transformation, 2) gas-phase and solid-phase analysis; (divergence form of the governing system, a finite-volume discretization, implicit time integration, upwind split flux, spatial accuracy improvement are described. Mass, reagent mass, and energy conservations are solved.), and 3) method to determine quantities on the burning surface (matching). Results obtained for small values of the non-dimensional pressure show a steady-combustion and good agreement with the analytical solution. Numerical instability appeared for larger values of the pressure, discussion on the cause of the problem is made. This effort is a part of a study of flame spread phenomena on solid propellant surface.

  • PDF