• 제목/요약/키워드: Numerical Characteristics

검색결과 8,375건 처리시간 0.037초

가솔린 엔진에서 밸브리프트에 따른 유동특성에 관한 수치해석적 연구 (A Numerical Study of Valve Lift on the Flow Characteristics in Gasoline Engine)

  • 김대열
    • 한국공작기계학회논문집
    • /
    • 제17권4호
    • /
    • pp.81-88
    • /
    • 2008
  • Flow characteristics have one of the effects in the process of engine. The numerical analysis makes it possible to predict the flow fields. This paper presents characteristics of steady flow according to variation of valve lift in a gasoline engine. The numerical computations have been made to observe the pressure distribution in accordance with the variable valve lift. Characteristics of tumble flow and swirl flow according to the variable valve has also been investigated. We could find that tumble ratio and swirl ratio is different between with/without PDA valve. The steady flow test was simulated through three-dimensional analysis on intake port design for comparing with experimental data and confirming the feasibility of applying analytic method. As a result, this study shows the possibility of the usage of numerical simulation to predict the flow characteristics for gasoline engine.

2차원 수치해석모형을 이용한 낙동강 중류구간의 하천흐름 해석 (Analysis of Hydraulic Characteristics in the Middle Reaches of Nak-Dong River using 2-Dimensional Numerical Analyis Model)

  • 한성대;최현;안창환;이제윤
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.1732-1736
    • /
    • 2008
  • The characteristics of a river flow analysis are significant for river maintenance plan. At the present time, HEC-RAS, 1-Dimensional Numerical Analysis Model, is mainly applied to analyze the character of a river flow. The shape of a river is somewhat in longitudinal linear form. It was suspected that the usage of 1-dimensional numerical analysis model is more economical. Development of numerical analysis models and computers are possible to calculate large volume. Hence, it is possible to adapt the analysis of the key stations by 2-dimensional numerical analysis model. The limitation of 1-Dimensional Numerical Analysis Model is that it is hard to evaluate structure affection of numerical simulation by energy loss coefficient at river structure analyzing. When adaptation of the 2-dimensional numerical analysis model in river structure ensues, it takes more objective analyzing than 1-dimensional numerical analysis model for flow affection by river structure. 2-dimensional numerical analysis model consults with the different structure position of hydraulic characteristics and different water depth of shape and scope in vertical flow. 1-dimensional numerical analysis model is possible to simulate with only energy loss coefficient for sudden river section changing, sudden waterway changing by curved. 2-dimensional numerical analysis model use original geographical features. So the model removes technical subjectivity of faulty judgment. It is an objective analysis.

  • PDF

수리모형과 수치해석을 통한 만곡부 하천의 수리학적 특성 비교 고찰 (A Comparative Study on Hydraulic Characteristics of Curved Channel by Hydraulic Model Experiments and Numerical Analysis)

  • 서동일;최한규
    • 산업기술연구
    • /
    • 제27권A호
    • /
    • pp.85-94
    • /
    • 2007
  • This study, regarding curved channel, was performed to compare and analyze hydraulic characteristics and the speed of water and water level for left bank and right bank through hydraulic model experiments and numerical analysis. Real channels that had characteristics of curved channel were selected as objectives. In order to easily operate one and two dimensional numerical analysis and comparison for total 2.4Km model channel, measuring point was set up as 200m. HEC-RAS model was applied as one dimensional numerical analysis program and SMS model was used as two dimensional numerical analysis program. In respect of speed of water, the average speed of water for right bank recorded 8.33m/s in a model experiment and 3.08m/s, 8.57m/s were average speed of water for right bank in one dimensional and two dimensional numerical analysis. The average speed of water of two dimensional numerical analysis was quite similar to that of model experiments. Also, as for water level, maximum observational errors between one and two dimensional numerical analysis for right and left bank of model experiments were 0.66m, 0.84m and 0.28m, 0.48m for each. It was found that two dimensional numerical analysis had a similar result to hydraulic model experiments. Accordingly, from the result of this study, two dimensional numerical analysis should be used rather than one dimensional numerical analysis, when numerical analysis for curved channel is conducted.

  • PDF

Numerical Analysis of Acoustic Characteristics in Gas Turbine Combustor with Spatial Non-homogeneity

  • Sohn, Chae-Hoon;Cho, Han-Chang
    • Journal of Mechanical Science and Technology
    • /
    • 제18권8호
    • /
    • pp.1461-1469
    • /
    • 2004
  • Acoustic characteristics in an industrial gas-turbine combustor are numerically investigated by a linear acoustic analysis. Spatially non-homogeneous temperature field in the combustor is considered in the numerical calculation and the characteristics are analyzed in view of acoustic instability. Acoustic analyses are conducted in the combustors without and with acoustic resonator, which is one of the acoustic-damping devices or combustion stabilization devices. It has been reported that severe pressure fluctuation frequently occurs in the adopted combustor, and the measured signal of pressure oscillation is compared with the acoustic-pressure response from the numerical calculation. The numerical results are in good agreement with the measurement data. In this regard. the phenomenon of pressure fluctuation in the combustor could be caused by acoustic instability. From the numerical results for the combustor with present acoustic resonators installed, the acoustic effects of the resonators are analyzed in the viewpoints of both the frequency tuning and the damping capacity. It is found that the resonators with present specifications are not optimized and thus, the improved specification or design is required.

압축공기를 이용한 부침식 가두리 시설의 부침 특성에 대한 수치해석 (Numerical analysis on the submerging characteristics of submersible fish cage system operated by compressed air)

  • 김태호;양경욱
    • 수산해양기술연구
    • /
    • 제43권1호
    • /
    • pp.38-48
    • /
    • 2007
  • Numerical modeling was used to evaluate the submerging characteristics of the submersible fish cage system operated by compressed air. The submerging characteristics calculated by numerical analysis as the cage was moved up and down were nearly identical to existing experiment results. Thus, the numerical model proposed in this study could be very useful in analyzing various parameters required for optimizing the design of a submersible fish cage system operated by compressed air.

U-자형 곡관내의 유동특성에 대한 수치해석적 연구 (NUMERICAL SIMULATION OF THE FLOW CHARACTERISTICS INSIDE A U-TYPE TUBE)

  • 고동훈;강동진;송동주
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.97-103
    • /
    • 2009
  • A numerical study of the flow characteristics inside a U-type circular tube is carried out in this paper. The numerical simulations carried out by using a Navier-Stokes code which is commercially available. Before detailed numerical simulations, validation of present numerical approach is made by comparing numerical solutions with experimental data. Numerical simulations are performed to study the effect of curvature on the flow characteristics inside a U-type tube. Numerical solutions show that a significant effect on the secondary flow structure in the cross section of the tube, especially in the curved section is shown when the curvature ratio, ratio of curvature to tube diameter, is smaller than about 3.5. As the curvature ratio decreases below 3.5, a counter rotating vortex is found below the primary vortex in the cross section of the tube. Another dramatic change of the flow structure is the formation of streamwise separation zone when the curvature ratio is decreased below 1.25.

  • PDF

U-자형 곡관내의 유동특성에 대한 수치해석적 연구 (NUMERICAL SIMULATION OF THE FLOW CHARACTERISTICS INSIDE A U-TYPE TUBE)

  • 고동훈;강동진;송동주
    • 한국전산유체공학회지
    • /
    • 제14권3호
    • /
    • pp.105-114
    • /
    • 2009
  • A numerical study of the flow characteristics inside a U-type circular tube is carried out in this paper. The numerical simulations carried out by using a Navier-Stokes code which is commercially available. Before detailed numerical simulations, validation of present numerical approach is made by comparing numerical solutions with experimental data. Numerical simulations are performed to study the effect of curvature on the flow characteristics inside a U-type tube. Numerical solutions show that a significant effect on the secondary flow structure in the cross section of the tube, especially in the curved section is shown when the curvature ratio, ratio of curvature to tube diameter, is smaller than about 3.5. As the curvature ratio decreases below 3.5, a counter rotating vortex is found below the primary vortex in the cross section of the tube. Another dramatic change of the flow structure is the formation of streamwise separation zone when the curvature ratio is decreased below 1.25.

분기관내 뉴턴유체와 혈액의 맥동유동특성에 관한 연구 (A study on the pulsatile flow characteristics of Newtonian and non-Newtonian fluids in the bifurcated tubes)

  • 서상호;유상신김영호노형운
    • 대한기계학회논문집B
    • /
    • 제20권11호
    • /
    • pp.3607-3619
    • /
    • 1996
  • Experimental and numerical studies for three-dimensional pulsatile flows are conducted to investigate the flow characteristics in the bifurcated tubes. Velocity measurements in experimental study were made by both Pulsed Doppler Ultrasound(PDU) machine and Laser Doppler Anemometer(LDA) system. Glycerin is used for experimental study. Experimental results are used to verify the results of the numerical simulation. Flow characteristics of Newtonian fluid and blood in the bifurcated tubes under the steady and pulsatlie flows are numerically investigated. Finite volume method is employed for three-dimensional numerical simulations. Blood is considered as a non-Newtonian fluid and the constitutive equation of blood is used for the numerical analysis. Numerical analyses are focused on the flow patterns for various branch angles ranging from 30.deg. to 90.deg. and diameter ratios such as 1.0, 0.8, and 0.6. Pulsatile flow characteristics of blood are compared with those of Newtonian fluid. Parameter effects on axial velocity, pressure and wall shear stress distribution along the bifurcated tubes are discussed in terms of the branch angle, diameter ratio, and Reynolds number.

대향형 Xe 플라즈마 평판 램프의 방전 및 발광 특성에 관한 수치적 연구 (Numerical Analysis of the Discharge and Luminous Characteristics of a Planar Type Xe Plasma Flat Lamp)

  • 김혁환;이원종
    • 한국전기전자재료학회논문지
    • /
    • 제24권10호
    • /
    • pp.822-833
    • /
    • 2011
  • A Xe plasma flat lamp, which has been noticed as a new eco-friendly LCD (liquid crystal display) backlight, requires the improvement of the luminance and the luminous efficiency although it has several advantages. To improve the performance of a lamp, it is necessary to understand the effects of discharge variables on the luminous characteristics of the lamp. Since it is difficult to diagnose a lamp discharge experimentally, the numerical analysis can be used instead. In this study, the luminous characteristics of a planar type Xe plasma flat lamp were analyzed with the variation of an input voltage and a pulse frequency. The numerical analysis of a lamp discharge was then performed using a RCT (relaxation continuum) model and a LFA (local field approximation) model. The comparison with the experimental results showed that the RCT model is valid for the numerical analysis of the flat lamp. The numerical analysis also showed that the modifications of a high frequency component and a voltage falling rate in the input voltage waveform could improve the luminous characteristics of the lamp.

Finite element model updating of in-filled RC frames with low strength concrete using ambient vibration test

  • Arslan, Mehmet Emin;Durmus, Ahmet
    • Earthquakes and Structures
    • /
    • 제5권1호
    • /
    • pp.111-127
    • /
    • 2013
  • This paper describes effects of infill walls on behavior of RC frame with low strength, including numerical modeling, modal testing and finite-element model updating. For this purpose full scaled, one bay and one story RC frame is produced and tested for plane and brick in-filled conditions. Ambient-vibration testis applied to identify dynamic characteristics under natural excitations. Enhanced Frequency Domain Decomposition and Stochastic Subspace Identification methods are used to obtain experimental dynamic characteristics. A numerical modal analysis is performed on the developed two-dimensional finite element model of the frames using SAP2000 software to provide numerical frequencies and mode shapes. Dynamic characteristics obtained by numerical and experimental are compared with each other and finite element model of the frames are updated by changing some uncertain modeling parameters such as material properties and boundary conditions to reduce the differences between the results. At the end of the study, maximum differences in the natural frequencies are reduced on average from 34% to 9% and a good agreement is found between numerical and experimental dynamic characteristics after finite-element model updating. In addition, it is seen material properties are more effective parameters in the finite element model updating of plane frame. However, for brick in-filled frame changes in boundary conditions determine the model updating process.