• Title/Summary/Keyword: Numerical

Search Result 42,450, Processing Time 0.05 seconds

Role of Supercomputers in Numerical Prediction of Weather and Climate (기상 및 기후의 수치예측에 대한 슈퍼컴퓨터의 역할)

  • Park, Seon-Ki
    • Atmosphere
    • /
    • v.14 no.4
    • /
    • pp.19-23
    • /
    • 2004
  • Progresses in numerical prediction of weather and climate have been in parallel with those of computing resources, especially the development of supercomputers. Advanced techniques in numerical modeling, computational schemes, and data assimilation cloud not have been practically achieved without the aid of supercomputers. With such techniques and computing powers, the accuracy of numerical forecasts has been tremendously improved. Supercomputers are also indispensible in constructing and executing the synthetic Earth system models. In this study, a brief overview on numerical weather / climate prediction, Earth system modeling, and the values of supercomputing is provided.

Validation of Numerical Codes Applied to Floating Offshore Structures

  • Choi, Hang S.
    • Journal of Hydrospace Technology
    • /
    • v.2 no.1
    • /
    • pp.55-64
    • /
    • 1996
  • Herein a review is made on the validation problem of numerical codes applied to floating offshore structures. Since the dynamic behaviour of offshore floating structures in water waves is in general complex and nonlinear, a numerical approach seems to be promising. However, numerical codes are likely involved with uncertainties and they at the present status show apparent scatterness in typical bechmark tests, particularly in second-order wave forces. Convergence test is the minimum requirement for the validation of numerical codes. Some other practical check points are introduced to clarify the potential error sources. It is concluded that a standard procedure for validation must be urgently established sothat numerical methods can safely be used as a rational design tool.

  • PDF

Numerical discrepancy between serial and MPI parallel computations

  • Lee, Sang Bong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.5
    • /
    • pp.434-441
    • /
    • 2016
  • Numerical simulations of 1D Burgers equation and 2D sloshing problem were carried out to study numerical discrepancy between serial and parallel computations. The numerical domain was decomposed into 2 and 4 subdomains for parallel computations with message passing interface. The numerical solution of Burgers equation disclosed that fully explicit boundary conditions used on subdomains of parallel computation was responsible for the numerical discrepancy of transient solution between serial and parallel computations. Two dimensional sloshing problems in a rectangular domain were solved using OpenFOAM. After a lapse of initial transient time sloshing patterns of water were significantly different in serial and parallel computations although the same numerical conditions were given. Based on the histograms of pressure measured at two points near the wall the statistical characteristics of numerical solution was not affected by the number of subdomains as much as the transient solution was dependent on the number of subdomains.

Numerical study on the influence of mesomechanical properties on macroscopic fracture of concrete

  • Zhu, W.C.;Tang, C.A.;Wang, S.Y.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.5
    • /
    • pp.519-533
    • /
    • 2005
  • The numerical simulations on the influence of mesoscopic structures on the macroscopic strength and fracture characteristics are carried out based on that the concrete is assumed to be a three-phase composite composed of matrix (mortar), aggregate and bond between them by using a numerical code named MFPA. The finite element program is employed as the basic stress analysis tool when the elastic damage mechanics is used to describe the constitutive law of meso-level element and the maximum tensile strain criterion and Mohr-Coulomb criterion are utilized as damage threshold. It can be found from the numerical results that the bond between matrix and aggregate has a significant effect on the macroscopic mechanical performance of concrete.

Numerical Evaluation of Various Numerical Integration Methods in Free Vibration Analysis (자유진동 해석에서 수치적분기법의 수치적평가)

  • 송주한;안대순;오상진;박광규
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1249-1253
    • /
    • 2001
  • Numerical analysis is sometimes used to solve the problems in the engineering and natural science fields. On this reason, the faster, more practical system in computing the numerical solution is required. This paper deals with the numerical evaluation of various numerical integration methods which is frequently used in the engineering fields. This paper choices four integration methods such as Euler method, Heun's method, Runge-Kutta method and Gill's method for evaluating the each integration method. In numerical examples, the free vibration problem on an elastic foundation is chosen. As the numerical results, the natural frequencies and the running time are obtained, and these results are compared to examine the practicality of integration methods.

  • PDF

NUMERICAL SIMULATION OF THE FLOW CHARACTERISTICS INSIDE A U-TYPE TUBE (U-자형 곡관내의 유동특성에 대한 수치해석적 연구)

  • Koh, D.H.;Kang, D.J.;Song, D.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.97-103
    • /
    • 2009
  • A numerical study of the flow characteristics inside a U-type circular tube is carried out in this paper. The numerical simulations carried out by using a Navier-Stokes code which is commercially available. Before detailed numerical simulations, validation of present numerical approach is made by comparing numerical solutions with experimental data. Numerical simulations are performed to study the effect of curvature on the flow characteristics inside a U-type tube. Numerical solutions show that a significant effect on the secondary flow structure in the cross section of the tube, especially in the curved section is shown when the curvature ratio, ratio of curvature to tube diameter, is smaller than about 3.5. As the curvature ratio decreases below 3.5, a counter rotating vortex is found below the primary vortex in the cross section of the tube. Another dramatic change of the flow structure is the formation of streamwise separation zone when the curvature ratio is decreased below 1.25.

  • PDF

A Study on the Application of Load Distribution Factor through the Three-Dimensional Numerical Analysis in Tunnel (터널의 3차원 수치해석에서 하중분배율 적용에 관한 연구)

  • Yoon, Won-Sub;Cho, Chul-Hyun;Park, Sang-Jun;Kim, Jong-Kook;Chae, Young-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.784-791
    • /
    • 2008
  • In this study, we recognized about application of the load distribution factor for design of tunnel in 3D numerical analysis. Generally, load distribution factor of tunnel is applied to describe 3D arching effect that can not describe when 2D numerical analysis. Through result of 3D numerical analysis, we used to apply in numerical analysis for the load distribution factor that ratio of finally displacement to displacement of construction step. But 3D numerical analysis need to apply to load distribution factor for convenience of numerical analysis. Therefore, we proposed load distribution factor that reduce time and coast. It corrected variable of advanced length in load distribution factor of 3D numerical analysis.

  • PDF

NUMERICAL SIMULATION OF THE FLOW CHARACTERISTICS INSIDE A U-TYPE TUBE (U-자형 곡관내의 유동특성에 대한 수치해석적 연구)

  • Koh, D.H.;Kang, D.J.;Song, D.J.
    • Journal of computational fluids engineering
    • /
    • v.14 no.3
    • /
    • pp.105-114
    • /
    • 2009
  • A numerical study of the flow characteristics inside a U-type circular tube is carried out in this paper. The numerical simulations carried out by using a Navier-Stokes code which is commercially available. Before detailed numerical simulations, validation of present numerical approach is made by comparing numerical solutions with experimental data. Numerical simulations are performed to study the effect of curvature on the flow characteristics inside a U-type tube. Numerical solutions show that a significant effect on the secondary flow structure in the cross section of the tube, especially in the curved section is shown when the curvature ratio, ratio of curvature to tube diameter, is smaller than about 3.5. As the curvature ratio decreases below 3.5, a counter rotating vortex is found below the primary vortex in the cross section of the tube. Another dramatic change of the flow structure is the formation of streamwise separation zone when the curvature ratio is decreased below 1.25.

Two-Dimensional Numerical Simulation of Saltwater intrusion in Estuary with Sigma-Coordinate Transformation (연직좌표변환을 이용한 하구에서의 염수침투에 관한 2차원 수치모의)

  • Bae, Yong-Hoon;Park, Seong-Soo;Lee, Seung-Oh;Cho, Yong-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1263-1267
    • /
    • 2007
  • A more complete two-dimensional vertical numerical model has been developed to describe the saltwater intrusion in an estuary. The model is based on the previous studies in order to obtain a better accuracy. The non-linear terms of the governing equations are analyzed and the $\sigma$-coordinate system is employed in the vertical direction with full transformation which is recently issued in several studies because numerical errors can be generated during the coordinate transformation of the diffusion term. The advection terms of the governing equations are discretized by an upwind scheme in second-order of accuracy. By employing an explicit scheme for the longitudinal direction and an implicit scheme for the vertical direction, the numerical model is free from the restriction of temporal step size caused by a relatively small grid ratio. In previous researches, some terms induced from the transformation have been intentionally excluded since they are asked the complicate discretization of the numerical model. However, the lack of these terms introduces significant errors during the numerical simulation of scalar transport problems, such as saltwater intrusion and sediment transport in an estuary. The numerical accuracy attributable to the full transformation is verified by comparing results with a previous model in a simply sloped topography. The numerical model is applied to the Han River estuary. Very reasonable agreements for salinity intrusion are observed.

  • PDF