• Title/Summary/Keyword: Number of passes

Search Result 195, Processing Time 0.032 seconds

A Gating System Design to Reduce the Gas Porosity for Die Casting Mobile Device (다이캐스팅 모바일 기기의 기공결함 감소를 위한 유동구조 설계)

  • Jang, Jeong Hui;Kim, Jun Hyung;Han, Chul Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.86-92
    • /
    • 2021
  • Usually, the die-cast components used in small mobile devices require finishing processes, such as computer numerically controlled coating. In such cases, porosity is the most important defect. The shape of the molten aluminum that passes through the runner and gate in a mold is the one of the factors that influences gas porosity. To define the spurt index, which numerically indicates the shape of molten aluminum after the gate, Reynolds number and Ohnesorge number are used. Before die fabrication, computer-aided engineering analysis is performed to optimize the filling pattern. Finally, X-ray and surface inspection are performed after casting and machining to evaluate how the spurt index affects porosity and other product parameters. Based on the results obtained herein, a new gating system design process is suggested.

Fitting a Piecewise-quadratic Polynomial Curve to Points in the Plane (평면상의 점들에 대한 조각적 이차 다항식 곡선 맞추기)

  • Kim, Jae-Hoon
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.36 no.1
    • /
    • pp.21-25
    • /
    • 2009
  • In this paper, we study the problem to fit a piecewise-quadratic polynomial curve to points in the plane. The curve consists of quadratic polynomial segments and two points are connected by a segment. But it passes through a subset of points, and for the points not to be passed, the error between the curve and the points is estimated in $L^{\infty}$ metric. We consider two optimization problems for the above problem. One is to reduce the number of segments of the curve, given the allowed error, and the other is to reduce the error between the curve and the points, while the curve has the number of segments less than or equal to the given integer. For the number n of given points, we propose $O(n^2)$ algorithm for the former problem and $O(n^3)$ algorithm for the latter.

Prospective Assessment of the Performance of a New Fine Needle Biopsy Device for EUS-Guided Sampling of Solid Lesions

  • El Hajj, Ihab I.;Wu, Howard;Reuss, Sarah;Randolph, Melissa;Harris, Akeem;Gromski, Mark A.;Al-Haddad, Mohammad
    • Clinical Endoscopy
    • /
    • v.51 no.6
    • /
    • pp.576-583
    • /
    • 2018
  • Background/Aims: Endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) remains the most common EUS-guided tissue acquisition technique. This study aimed to evaluate the performance of a new Franseen tip fine needle biopsy (FNB) device for EUSguided sampling of solid lesions and compare it with the historical FNA technique. Methods: $Acquire^{(R)}$ 22 G FNB needle (Boston Scientific Co., Natick, MA, USA) was used for solid tumor sampling (Study group). Tissue was collected for rapid on-site evaluation, and touch and crush preparations were made. Historical EUS-FNA samples obtained using $Expect^{(R)}$ 22 G FNA needle (Boston Scientific Co.) were used as controls (Control group). All specimens were independently evaluated by two cytopathologists blinded to the formal cytopathological diagnosis. Results: Mean cell block histology scores were significantly higher (p=0.046) in the FNB group (51 samples) despite a significantly lower (p<0.001) mean number of passes compared to the FNA group (50 specimens). The overall diagnostic yields for the FNB vs. FNA groups were 96% vs. 88%. The degree of tumor differentiation was adequately assessed in all cell block qualifying lesions in the FNB group. Two patients developed post-FNB abdominal pain. Conclusions: The new Franseen tip FNB device provides histologically superior and cytologically comparable specimens to those obtained by FNA, but with fewer passes.

Marketability Analysis of Seoul Landmark Pass (서울 랜드마크 패스의 상품성 분석)

  • Oh, Junseok;Kwak, Sunhee;Kim, Hanbyeol;Jeon, Heesoo;Kim, Jonghwa
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.1
    • /
    • pp.131-143
    • /
    • 2017
  • As the number of tourists visiting Seoul are continuously increasing, the demand of an integrative tour pass is also increasing. However, only a few tour passes are available for the tourists in Seoul. In this paper, we propose a new tour pass called "Seoul Landmark Pass" targeting foreign individual travelers and investigate the marketability of the proposed tour pass. For the configuration of the Seoul Landmark Pass we listed 17 candidate attractions charging entrance fee in Seoul, referring to e-guidebook on Visit Seoul web site. Among them we selected 6 attractions using the checklist with the attributes that foreign tourists would prefer. We also performed SWOT analyzes on existing tour passes to determine the benefits to be included in the proposed tour pass. To investigate the marketability of the proposed tour pass we have surveyed the foreign individual tourists in Seoul. Using the survey data, we have analyzed the intent of purchase by age, visiting period, visiting purpose, frequency of visit, and nationality to identify target customers. The results show that the intent of purchase is high among the Chinese tourists at the age of twenties who visited Seoul for the first time or second times. Also, the individual tourists prefer to bundle T-money card with the proposed tour pass. Finally, we have provided a brief review of the Price Sensitivity Measurement (PSM) method and applied PSM to determine the acceptable price range and the optimal price of the proposed tour pass. The optimal price of the proposed tour pass is determined at 53,000 won including T-money card.

Question Answering Optimization via Temporal Representation and Data Augmentation of Dynamic Memory Networks (동적 메모리 네트워크의 시간 표현과 데이터 확장을 통한 질의응답 최적화)

  • Han, Dong-Sig;Lee, Chung-Yeon;Zhang, Byoung-Tak
    • Journal of KIISE
    • /
    • v.44 no.1
    • /
    • pp.51-56
    • /
    • 2017
  • The research area for solving question answering (QA) problems using artificial intelligence models is in a methodological transition period, and one such architecture, the dynamic memory network (DMN), is drawing attention for two key attributes: its attention mechanism defined by neural network operations and its modular architecture imitating cognition processes during QA of human. In this paper, we increased accuracy of the inferred answers, by adapting an automatic data augmentation method for lacking amount of training data, and by improving the ability of time perception. The experimental results showed that in the 1K-bAbI tasks, the modified DMN achieves 89.21% accuracy and passes twelve tasks which is 13.58% higher with passing four more tasks, as compared with one implementation of DMN. Additionally, DMN's word embedding vectors form strong clusters after training. Moreover, the number of episodic passes and that of supporting facts shows direct correlation, which affects the performance significantly.

Efficient On-the-fly Detection of First Races in Shared-Memory Programs with Nested Parallelism (내포병렬성을 가진 공유메모리 프로그램의 수행중 최초경합 탐지를 위한 효율적 기법)

  • 하금숙;전용기;유기영
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.7_8
    • /
    • pp.341-351
    • /
    • 2003
  • For debugging effectively the shared-memory programs with nested parallelism, it is important to detect efficiently the first races which incur non-deterministic executions of the programs. Previous on-the-fly technique detects the first races in two passes, and shows inefficiencies both in execution time and memory space because the size of an access history for each shared variable depends on the maximum parallelism of program. This paper proposes a new on-the-fly technique to detect the first races in two passes, which is constant in both the number of event comparisons and the space complexity on each access to shared variable because the size of an access history for each shared variable is a small constant. This technique therefore makes on-the-fly race detection more efficient and practical for debugging shared-memory programs with nested parallelism.

Study on Running Safety of EMS-Type Maglev Vehicle Traveling over a Switching System (상전도흡인식 도시형 자기부상열차의 분기기 주행안전성 연구)

  • Han, Jong-Boo;Lee, Jong Min;Han, Hyung-Suk;Kim, Sung-Soo;Yang, Seok-Jo;Kim, Ki-Jung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.11
    • /
    • pp.1309-1315
    • /
    • 2014
  • The switch for a maglev vehicle should be designed such that the vehicle safely changes its track without touching the guiderail. In particular, a medium-to-low-speed EMS -type maglev train relies heavily on a U-type electromagnet where it generates levitation force and guidance force simultaneously. Therefore, it is necessary to evaluate the safety of the vehicle whenever it passes the switch, as it lacks active control of the guidance force. Furthermore, when the vehicle passes a segmented switch, which is a group of curves made up of connected lines with a small radius of curvature, it may come into mechanical contact with the guiderail owing to the excessive lateral displacement of the electromagnet. The goal of this study is to analyze the influence of a segmented switch on the safety of major design-related variables for achieving improved running safety. We propose a three-dimensional multibody dynamics model composed of two cars with one body. Using the proposed model, we perform a simulation of the lateral air gap, which is one of the measurements of the running safety of the vehicle when it passes the switch. The analyzed design variables are the length between short span girder, the articulation angle, the length between two centers of a fixed girder at its ends, and the number of girders. On the basis of the effects of the considered design variables, we establish an optimized design of a switch with improved safety.

Improvement of Mechanical Properties of Mg alloys through Control of Grain Size and Texture (결정립크기와 집합조직제어를 통한 마그네슘 합금의 기계적 성질 개선)

  • Kim, W.J.;Lee, J.B.;Kim, W.Y.;Jeong, H.G.;Park, J.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.57-58
    • /
    • 2006
  • The effects of lowering ECAP temperature during ECAP process and Post-ECAP annealing on microstructure, texture and mechanical properties of the AZ31 alloys have been investigated in the present study. The as-extruded materials were ECAP processed to 2 passes at 553K prior to subsequent pressing up to 6 passes at 523K or 493K. When this method of lowering ECAP temperature during ECAP was used, the rods could be successfully deformed up to 6 passes without any surface cracking. Grain refinement during ECAP process at 553K might have helped the material to endure further straining at lower deformation temperatures probably by increasing the strain accommodation effect by grain boundary sliding, causing stress relaxation. Texture modification during ECAP has a great influence on the strength of Mg alloys because HCP metals have limited number of slip systems. As slip is most prone to take place on basal planes in Mg at room temperature, the rotation of high fraction of basal planes to the directions favorable for slip as in ECAP decreases the yield stress appreciably. The strength of AZ31 Mg alloys increases with decrease of grain size if the texture is constant though ECAP deformation history is different. A standard positive strength dependence on the grain size for Mg alloys with the similar texture (Fig. 1) supports that the softening of ECAPed Mg alloys (a negative slope) typically observed despite the significant grain refinement is due to the texture modification where the rotation of basal planes occurs towards the orientation for easier slip. It could be predicted that if the original fiber texture is restored after ECAP treatment yielding marked grain refinement, yield stress as high as 500 MPa will be obtained at the grain size of ${\sim}1{\mu}m$. Differential speed rolling (DSR) with a high speed ratio between the upper and lower rolls was applied to alter the microstructure and texture of the AZ31 sheets. Significant grain refinement took place during the rolling owing to introduction of large shear deformation. Grain size as small as $1.4{\mu}m$ could be obtained at 423K after DSR. There was a good correlation between the (0002) pole intensity and tensile elongation. This result indicates that tensile ductility improvement in the asymmetrically rolled AZ31 Mg alloys is closely related to the weakening of basal texture during DSR. Further basal texture weakening occurred during annealing after DSR. According to Hall-Petch relation shown in Fig. 1, the strength of the asymmetrically rolled AZ31 is lower than that of the symmetrically rolled one when compared at the same grain size. This result was attributed to weakening of fiber texture during DSR. The DSRed AZ31, however, shows higher strength than the ECAPed AZ31 where texture has been completely replaced by a new texture associated with high Schmid factors.

  • PDF

앞전에서의 팽창파를 이용한 양항비의 개선에 대한 연구

  • Yun, Yeong-Jun
    • Proceeding of EDISON Challenge
    • /
    • 2016.11a
    • /
    • pp.19-22
    • /
    • 2016
  • Leading edge thrust is generally caused by passing air flow from lower to upper surface and it is required to have sufficient angle of attack for notable leading edge thrust. To produce leading edge thrust at low angle of attack, utilizing expansion wave accompanying low pressure is able to be a solution. Fore structure changes the direction of flow, and this flow passes the projected edge. As a result, from a perspective of the edge, it is able to have high angle of attack, and artificial expansion wave is generated. This concept shows 9.48% increase of L/D in inviscid flow, at Mach number 1.3 and angle of attack $1^{\circ}$ in maximum, and this model shows the 3.98% of increasement at angle of attack $2^{\circ}$. Although advantage of the artificial expansion wave decreased as angle of attack increase, it shows the possibility of aerodynamical improvement with artificial expansion wave.

  • PDF

Assessment of pull-out behavior of tunnel-type anchorages under various joint conditions

  • Junyoung Ko;Hyunsung Lim;Seunghwan Seo;Moonkyung Chung
    • Geomechanics and Engineering
    • /
    • v.36 no.1
    • /
    • pp.71-81
    • /
    • 2024
  • This study analyzes the pull-out behavior of tunnel-type anchorage under various joint conditions, including joint direction, spacing, and position, using a finite element analysis. The validity of the numerical model was evaluated by comparing the results with a small-scaled model test, and the results of the numerical analysis and the small-scaled model test agree very well. The parametric study evaluated the quantitative effects of each influencing factor, such as joint direction, spacing, and position, on the behavior of tunnel-type anchorage using pull-out resistance-displacement curves. The study found that joint direction had a significant effect on the behavior of tunnel-type anchorage, and the pull-out resistance decreased as the displacement level increased from 0.002L to 0.006L (L: anchorage length). It was confirmed that the reduction in pull-out resistance increased as the number of joints in contact with the anchorage body increased and the spacing between the joints decreased. The pull-out behavior of tunnel-type anchorage was thus shown to be significantly influenced by the position and spacing of the rock joints. In addition, it is found that the number of joints through which the anchorage passes, the wider the area where the plastic point occurs, which leads to a decrease in the resistance of the anchorage.