• Title/Summary/Keyword: Number of Cracks

Search Result 379, Processing Time 0.026 seconds

A Study on Guidelines for the Repair of Water-Leakage Cracks in Concrete Structures (콘크리트 구조물에 있어서 누수균열 보수를 위한 일반지침 제안 연구)

  • Oh, Sang-Keun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.6
    • /
    • pp.97-107
    • /
    • 2010
  • This study outlines a successful and effective plan for repairing water-leakage cracks in concrete structures. The lack of adequate solutions for water-leakage cracks often results in unnecessarily high repair costs, and as such this remains a problem that requires constant attention. Unfortunately, despite the availability of a vast number of different materials and methods, it is often difficult to attain a perfect waterproof sealing The reason for the difficulties in the repair of water-leakage cracks can be attributed to an insufficient knowledge and understanding of the negative factors (i.e., chemical and physical (mechanical) conditions) that cause water-leakage cracks, and of the properties of the repair materials and methods. In this study, guidelines and methods for the selection of adequate materials for the repair of water-leakage cracks in concrete structures were developed for countries that do not already have general guidelines on this subject, and for local regulatory authorities elsewhere.

A Study on Prevention of Weld Transverse Crack for Thick Plate(Ⅱ) (후판 용접부의 횡균열 발생 방지에 관한 연구(Ⅱ))

  • Jeong, Ho-Sin;Gang, Seong-Won
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3 s.33
    • /
    • pp.57-67
    • /
    • 1999
  • Welding is widely applicable and reliable process and is mainly adopted for fabricating heavy structures. Recently, weld metal transverse cracks in butt and fillet weld joint is a serious problem, and they must be eliminated for improving weld joint reliability. The weld metal transverse crack susceptibility of butt and fillet joint was carried out by cantilever type tensile crack testing jig and CTS test. In this view of point, this study investigated the potential factors for weld metal transverse crack. The main results obtained were as follows: 1. The content o fdiffusible hydrogen in weld metal played an important role for weld metal transverse cracks. 2. From cantilever type tensile crack tests, it was pointed out that the higher the diffusible hydrogen content and tensile restraint, the more susceptible to weld metal transverse craking. 3. The TSN(thermal severity number) and diffusible hydrogen were important factors for determining weld metal transverse cracks in fillet weld joints.

  • PDF

A Study on Crack Properties iber Reinforced Concrete Beams (강섬유 보강 철근콘크리트보의 균열특성에 관한 연구)

  • 강보순
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.99-104
    • /
    • 2000
  • In this paper, the crack properties fiber reinforced concrete(SFRC) beams by experimental method is discussed. The major role played by the steel fiber occurs in the post-cracking zone, in which the fibers bridge across the cracked matrix. Because of its improved ability to bridging cracks, SFRC has better crack properties than that of reinforced concrete(RC). Crack properties are influenced by longitudinal reinforcement ratio, volume and type of steel fibers, strength of concrete and the stress level. Crack width and number of cracks in SFRC beams have been evaluated from experimental test data at various levels of stress for the tested beams.

  • PDF

Damage zone induced by quasi-static gas pressure during blasting (준정적인 발파 가스압에 의한 암반의 손상 영역 예측)

  • Sim, Young-Jong;Cho, Gye-Chun;Kim, Hong-Taek
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1409-1416
    • /
    • 2010
  • It is essential to predict a blasting-induced excavation damage zone (EDZ) beyond the proposed excavation line of a tunnel because the unwanted damage area requires extra support system for tunnel safety. Complicated blasting process which may hinder a proper characterization of the damage zone can be effectively represented by two loading mechanisms. The one is a dynamic impulsive load generating stress waves outwards immediately after detonation. The other is a gas pressure that remains for a relatively long time. Since the gas pressure reopens up the arrested cracks and continues to extend some cracks, it contributes to the final formation of EDZ induced by blasting. This paper presents the simple method to evaluate EDZ induced by gas pressure during blasting in rock. The EDZ is characterized by analyzing crack propagation from the blasthole. To do this, a model of the blasthole with a number of radial cracks of equal length in an infinite elastic plane is considered. In this model, the crack propagation is simulated by using three conditions, the crack propagation criterion, the mass conservation of the gas, and the adiabatic condition. As a result, the stress intensity factor of the crack generally decreases as crack propagates from the blasthole so that the length of the crack is determined. In addition, the effect of rock properties, initial number of cracks, and the adiabatic exponent are investigated.

  • PDF

Ultrasonic Flaw Detection in Turbine Rotor Disc Keyway Using Neural Network (신경회로망을 이용한 터빈로타 디스크 키웨이의 결함 검출)

  • Son, Young-Ho;Lee, Jong-O;Yoon, Woon-Ha;Lee, Byung-Woo;Seo, Won-Chan;Lee, Jong-Kyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.1
    • /
    • pp.45-52
    • /
    • 2003
  • A number of stress corrosion cracks in turbine rotor disk keyway in power plants have been found and the necessity has been raised to detect and evaluate the cracks prior to the catastrophic failure of turbine disk. By ultrasonic RF signal analysis and using a neural network based on bark-propagation algorithm, we tried to evaluate the location, size and orientation of cracks around keyway. Because RF signals received from each reflector have a number of peaks, they were processed to have a single peak for each reflector. Using the processed RF signals, scan data that contain the information on the position of transducer and the arrival time of reflected waves from each reflector were obtained. The time difference between each reflector and the position of transducer extracted from the scan data were then applied to the back-propagation neural network. As a result, the neural network was found useful to evaluate the location, size and orientation of cracks initiated from keyway.

Complex analysis of rock cutting with consideration of rock-tool interaction using distinct element method (DEM)

  • Zhang, Guangzhe;Dang, Wengang;Herbst, Martin;Song, Zhengyang
    • Geomechanics and Engineering
    • /
    • v.20 no.5
    • /
    • pp.421-432
    • /
    • 2020
  • Cutting of rocks is very common encountered in tunneling and mining during underground excavations. A deep understanding of rock-tool interaction can promote industrial applications significantly. In this paper, a distinct element method based approach, PFC3D, is adopted to simulate the rock cutting under different operation conditions (cutting velocity, depth of cut and rake angle) and with various tool geometries (tip angle, tip wear and tip shape). Simulation results showed that the cutting force and accumulated number of cracks increase with increasing cutting velocity, cut depth, tip angle and pick abrasion. The number of cracks and cutting force decrease with increasing negative rake angle and increase with increasing positive rake angle. The numerical approach can offer a better insight into the rock-tool interaction during the rock cutting process. The proposed numerical method can be used to assess the rock cuttability, to estimate the cutting performance, and to design the cutter head.

The effect of particle size on the edge notched disk (END) using particle flow code in three dimension

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming;Marji, Mohammad Fatehi
    • Smart Structures and Systems
    • /
    • v.22 no.6
    • /
    • pp.663-673
    • /
    • 2018
  • In this study, the effect of particle size on the cracks propagation and coalescence or cracking pattern of the edge notched disc specimens are investigated. Firstly, calibration of PFC3D was performed using Brazilian experimental test output. Then micro parameters were used to build edge notched disc specimen. The horizontal wall of the assembly is let to move downward with a standard low speed of 0.016 m/s. The numerical results show that the tensile cracks are dominant failure pattern for the modeled discs. These tensile cracks initiate from the pre-existing notch tip and propagate parallel to the loading direction then interact with the upper boundary of the modeled specimen. As the size of the balls (ball diameter) decrease the number of tensile cracks increase. The tensile fracture toughness of the samples also decreases as the particle size increases. Understanding the crack propagation and crack coalescence phenomena in brittle materials such as concretes and rocks is of paramount importance in the stability analyses for engineering structures such as rock slopes, underground structures and tunneling.

The effect of ball size on the hollow center cracked disc (HCCD) in Brazilian test

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming;Moradizadeh, Masih
    • Computers and Concrete
    • /
    • v.22 no.4
    • /
    • pp.373-381
    • /
    • 2018
  • Hollow center cracked disc (HCCD) in Brazilian test was modelled numerically to study the crack propagation in the pre-cracked disc. The pre-existing edge cracks in the disc models were considered to investigate the crack propagation and coalescence paths within the modelled samples. The effect of particle size on the hollow center cracked disc (HCCD) in Brazilian test were considered too. The results shows that Failure pattern is constant by increasing the ball diameter. Tensile cracks are dominant mode of failure. These crack initiates from notch tip, propagate parallel to loading axis and coalescence with upper model boundary. Number of cracks increase by decreasing the ball diameter. Also, tensile fracture toughness was decreased with increasing the particle size. In this research, it is tried to improve the understanding of the crack propagation and crack coalescence phenomena in brittle materials which is of paramount importance in the stability analyses of rock and concrete structures, such as the underground openings, rock slopes and tunnel construction.

Processing Evaluations of the Eagle Glass Cutting Using Pico-second Laser (피코초 레이저를 이용한 Eagle Glass 절단 시 가공성 평가)

  • Lee, Sang Kyun;Lee, Young Gon;Kim, Jae Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.4
    • /
    • pp.403-408
    • /
    • 2013
  • In this paper, the characteristics of ablation processing of the eagle glass by pico-second laser are investigated. The laser ablation is used to process micro forms on materials. The ablation causes little thermal effect and little burr on the surface of eagle glass. In order to examine the characteristics of panic cracks, experiments are conducted under various cutting conditions such as a frequency of 600 kHz, laser powers, scan speeds and number of scan(NS). To minimize the panic cracks, the specimens are heated at $30^{\circ}C$, $45^{\circ}C$, and $60^{\circ}C$ for ten minutes respectively and then they are broken by hands. Laser powers, NS and scan speeds have an effect on glass cutting results. The ablation depths increase with an increase in the laser power and NS whereas the panic cracks decrease with an increase in scan speed. The high temperature on processed specimens reduces the panic cracks and makes good results of laser cutting. The optimal condition for eagle glass laser cutting is found to be at 30 W of laser power, 3 mm/s of scan speed and 500 of NS, respectively.

Research on eccentric compression of ultra-high performance fiber reinforced concrete columns

  • Ma, Kaize;Ma, Yudong;Liu, Boquan
    • Structural Engineering and Mechanics
    • /
    • v.71 no.3
    • /
    • pp.211-221
    • /
    • 2019
  • To study the eccentric compression behavior of ultra-high performance fiber reinforced concrete (UHPFRC) columns, six UHPFRC columns and one high-strength concrete (HSC) column were tested. Variation parameters include load eccentricity, volume of steel fibers and stirrup ratio. The crack pattern, failure mode, bearing capacity, and deformation of the specimens were studied. The results showed that the UHPFRC columns had different failure modes. The large eccentric compression failure mode was the longitudinal tensile reinforcements yielded and many horizontal cracks appeared in the tension zone. The small eccentric compression failure mode was the longitudinal compressive reinforcements yielded and vertical cracks appeared in the compressive zone. Because of the bridging effect of steel fibers, the number of cracks significantly increased, and the width of cracks decreased. The load-deflection curves of the UHPFRC columns showed gradually descending without sudden dropping, indicating that the specimens had better deformation. The finite element (FE) analysis was performed to stimulate the damage process of the specimens with monotonic loading. The concrete damaged plasticity (CDP) model was adopted to characterize the behaviour of UHPFRC. The contribution of the UHPFRC tensile strength was considered in the bearing capacity, and the theoretical calculation formulas were derived. The theoretical calculation results were consistent with the test results. This research can provide the experimental and theoretical basis for UHPFRC columns in engineering applications.