Browse > Article
http://dx.doi.org/10.12989/sss.2018.22.6.663

The effect of particle size on the edge notched disk (END) using particle flow code in three dimension  

Haeri, Hadi (MOE Key Laboratory of Deep Underground Scienceand Engineering, School of Architectureand Environment, Sichuan University)
Sarfarazi, Vahab (Department of Mining Engineering, Hamedan University of Technology)
Zhu, Zheming (MOE Key Laboratory of Deep Underground Scienceand Engineering, School of Architectureand Environment, Sichuan University)
Marji, Mohammad Fatehi (Department of Mining Engineering, Yazd University)
Publication Information
Smart Structures and Systems / v.22, no.6, 2018 , pp. 663-673 More about this Journal
Abstract
In this study, the effect of particle size on the cracks propagation and coalescence or cracking pattern of the edge notched disc specimens are investigated. Firstly, calibration of PFC3D was performed using Brazilian experimental test output. Then micro parameters were used to build edge notched disc specimen. The horizontal wall of the assembly is let to move downward with a standard low speed of 0.016 m/s. The numerical results show that the tensile cracks are dominant failure pattern for the modeled discs. These tensile cracks initiate from the pre-existing notch tip and propagate parallel to the loading direction then interact with the upper boundary of the modeled specimen. As the size of the balls (ball diameter) decrease the number of tensile cracks increase. The tensile fracture toughness of the samples also decreases as the particle size increases. Understanding the crack propagation and crack coalescence phenomena in brittle materials such as concretes and rocks is of paramount importance in the stability analyses for engineering structures such as rock slopes, underground structures and tunneling.
Keywords
END test; pre-existing edge crack; PFC3D;
Citations & Related Records
Times Cited By KSCI : 14  (Citation Analysis)
연도 인용수 순위
1 Sarfarazi, V., Haeri, H. and Khaloo, A. (2016a), "The effect of non-persistent joints on sliding direction of rock slopes", Comput. Concrete, 17(6), 723-737.   DOI
2 Sato, K. (2006), "Fracture toughness evaluation based on tensionsoftening model and its application to hydraulic fracturing", Pure Appl. Geophys., 163(5), 1073-1089.   DOI
3 Shiryaev, A.M. and Kotkis, A.M. (1982), "Methods for determining fracture toughness of brittle porous materials", Industr. Labor., 48(9), 917-918.
4 Shuraim, A.B., Aslam, F., Hussain, R. and Alhozaimy, A. (2016), "Analysis of punching shear in high strength RC panels-experiments, comparison with codes and FEM results", Comput. Concrete, 17(6), 739-760.   DOI
5 Silva, R.V., Brito, J. and Dhir, R.K. (2015), "Tensil strength behaviour of recycled aggregate concrete", Constr. Build. Mater., 83, 108-118.   DOI
6 Singh, R.N. and Sun, G.X. (1990), "A numerical and experimental investigation for determining fracture toughness of welsh limestone", Min. Sci. Technol., 10(1), 61-70.   DOI
7 Suresh, S. and Shih, C.F., Morrone, A. and O'Dowd, N.P. (1990), "Mixed-mode fracture toughness of ceramic materials", J. Am. Ceram. Soc., 73(5), 1257-1267.   DOI
8 Tiang, Y., Shi, S., Jia, K. and Hu, S. (2015), "Mechanical and dynamic properties of high strength concrete modified with lightweight aggregates presaturated polymer emulsion", Constr. Build. Mater., 93, 1151-1156,   DOI
9 Tutluoglu, L. and Keles, C. (2011), "Mode I fracture toughness determination with straight notched disk bending method", J. Rock Mech. Min. Sci., 48(8), 1248-1261.   DOI
10 Wan Ibrahim, M.H., Hamzah, A.F., Jamaluddin, N., Ramadhansyah, P.J. and Fadzil, A.M. (2015), "Split tensile strength on self-compacting concrete containing coal bottom ash", Procedia - Social and Behavioral Sciences, 198, 2280-2289.
11 Haeri, H. (2015d), "Propagation mechanism of neighboring cracks in rock-like cylindrical specimens under uniaxial compression", J. Min. Sci., 51(3), 487-496.   DOI
12 Fayed, A.S. (2017), "Numerical analysis of mixed mode I/II stress intensity factors of edge slant cracked plates", Eng. Sol. Mech., 5(1), 61-70.
13 Gerges, N., Issa, C. and Fawaz, S. (2015), "Effect of construction joints on the splitting tensile strength of concrete", Case Studies Constr. Mater., 3, 83-91.   DOI
14 Hadei1, R. and Kemeny, J. (2016), "New development to measure mode I fracture toughness in rock", Period. Polytech. Civil Eng., 61(1), 51.
15 Haeri, H. (2015e), "Influence of the inclined edge notches on the shear-fracture behavior in edge-notched beam specimens", Comput. Concrete, 16(4), 605-623.   DOI
16 Haeri, H. (2015f), "Experimental crack analysis of rock-like CSCBD specimens using a higher order DDM", Comput. Concrete, 16(6), 881-896.   DOI
17 Haeri, H. and Sarfarazi, V. (2016a), "The effect of micro pore on the characteristics of crack tip plastic zone in concrete", Comput. Concrete, 17(1), 107-112.   DOI
18 Haeri, H., Sarfarazi, V. and Lazemi, H. (2016b), "Experimental study of shear behavior of planar non-persistent joint", Comput. Concrete, 17(5), 639-653.   DOI
19 Haeri, H., Khaloo, K. and Marji, M.F. (2015b), "Experimental and numerical analysis of Brazilian discs with multiple parallel cracks", Arab. J. Geosci., 8(8), 5897-5908   DOI
20 Haeri, H., Marji, M.F. and Shahriar, K. (2015a), "Simulating the effect of disc erosion in TBM disc cutters by a semi-infinite DDM", Arab. J. Geosci., 8(6), 3915-3927.   DOI
21 Haeri, H., Shahriar, K., Marji, M.F. and Moarefvand, P. (2014), "Investigating the fracturing process of rock-like Brazilian discs containing three parallel cracks under compressive line loading", Strut. Mater., 46(3), 133-148.
22 Khodayar, A. and Nejati, H.R. (2018), "Effect of thermal-induced microcracks on the failure mechanism of rock specimens", Comput. Concrete, 22(1), 93-100   DOI
23 Kequan, Y.U. and Zhoudao, L.U. (2015), "Influence of softening curves on the residual fracture toughness of post-fire normalstrength mortar", Comput. Mortar, 15(2), 102-111.
24 Kequan, Y.U. and Zhoudao, L.U. (2015), "Influence of softening curves on the residual fracture toughness of post-fire normalstrength concrete", Comput. Concrete, 15(2), 102-111.
25 Khan, K. and Al-Shayea, N.A. (2000), "Effect of specimen geometry and testing method on mixed I-II fracture toughness of a limestone rock from Saudi Arabia", Rock Mech. Rock Eng., 33(3), 179-206.   DOI
26 Kuruppu, M.D., Obara, Y., Ayatollahi, M.R., Chong, K.P. and Funatsu, T. (2014), "ISRM-suggested method for determining the mode I static fracture toughness using semi-circular bend specimen", Rock Mech. Rock Eng., 47, 267-274.   DOI
27 Lancaster, I.M., Khalid, H.A. and Kougioumtzoglou, I.A. (2013), "Extended FEM modelling of crack propagation using the semicircular bending test", Constr. Build. Mater., 48, 270-277   DOI
28 Lee, S. and Chang, Y. (2015), "Evaluation of RPV according to alternative fracture toughness requirements", Struct. Eng. Mech., 53(6), 1271-1286.   DOI
29 Lee, S. and Chang, Y. (2015), "Evaluation of RPV according to alternative fracture toughness requirements", Struct. Eng. Mech., 53(6), 1271-1286.   DOI
30 Li, S., Wang, H., Li, Y., Li, Q., Zhang, B. and Zhu, H. (2016), "A new mini-grating absolute displacement measuring system for static and dynamic geomechanical model tests", Measurement, 82, 421-431.   DOI
31 Zhang, Q.B. and Zhao, J. (2014), "Quasi-static and dynamic fracture behaviour of rock materials: phenomena and mechanisms", Int. J. Fract., 189, 1-32   DOI
32 Wang, Q.Z., Feng, F., Ni ,M. and Gou, X.P. (2011), "Measurement of mode I and mode II rock dynamic fracture toughness with cracked straight through flattened Brazilian disc impacted by split Hopkinson pressure bar", Eng. Fract. Mech., 78(12), 2455-2469   DOI
33 Haeri, H., Shahriar, K., Marji, M.F. and Moarefvand, P. (2015c), "The HDD analysis of micro cracks initiation, propagation and coalescence in brittle substances", Arab. J. Geosci., 8, 28412852.
34 He, M.Y., Cao, H.C. and Evans, A.G. (1990), "Mixed-mode fracture: The four point shear specimen", Acta Metal Mater., 38(5), 839-846.   DOI
35 Huang, J. and Wang, S. (1985), "An experimental investigation concerning the comprehensive fracture toughness of some brittle rocks", J. Rock Mech. Min. Sci. Geomech. Abstr., 22(2), 99-104.   DOI
36 Isida, M., Imai, R. and Tsuru, H. (1979), "Symmetric plane problems of arbitrarily shaped plates with an edge crack", T. Jap. Soc. Mech. Eng., 45(395), 743-749.   DOI
37 Li, Y., Zhou, H., Zhu, W., Li, S. and Liu, J. (2015), "Numerical study on crack propagation in brittle jointed rock mass influenced by fracture water pressure", Materials, 8(6), 3364-3376.   DOI
38 Wang, X., Zhu, Z., Wang, M., Ying, P., Zhou, L. and Dong, Y. (2017), "Study of rock dynamic fracture toughness by using VB-SCSC specimens under medium-low speed impacts", Eng. Fract. Mech., 181; 52-64.   DOI
39 Wu, Z.J., Ngai, L. and Wong, Y. (2014), "Investigating the effects of micro-defects on the dynamic properties of rock using Numerical Manifold method", Constr. Build. Mater., 72, 72-82.   DOI
40 Yaylac, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 1143-1156.   DOI
41 Zhao, Y., Zhao, G.F. and Jiang, Y. (2013), "Experimental and numerical modelling investigation on fracturing in coal under impact loads", Int. J. Fract., 183(1), 63-80.   DOI
42 Zhou, Y.X., Xia, K., Li, X.B., Li, H.B., Ma, G.W., Zhao, J., Zhou, Z.L. and Dai, F. (2012), "Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials", J. Rock Mech. Min. Sci., 49, 105-112.   DOI
43 Kataoka, M. and Obara, Y. (2013), "Estimation of fracture toughness of different kinds of rocks under water vapor pressure by SCB test", J. MMIJ, 129, 425-432.   DOI
44 ISRM (2007), The Complete ISRM Suggested Methods for Rock Characterization Testing and Monitoring: 1974-2006, International Society for Rock Mechanics, Kozan Ofset, Ankara, Turkey.
45 Itasca PFC2D (1999), Particle Flow Code in 2 Dimensions, Theory and Background, Itasca Consulting Group, Minneapolis, U.S.A.
46 Karfakis, M.G. and Akram, M. (1993), "Effects of chemical solutions on rockm fracturing", J. Rock Mech. Min. Sci. Geomech. Abstr., 30(7), 1253-1259.   DOI
47 Kataoka, M., Hashimoto, A., Sato, A. and Obara, Y. (2012), "Fracture toughness of anisotropic rocks by semi-circular bend (SCB) test under water vapor pressure", Proceedings of the 7th ARMS, Seoul, Korea, October.
48 Kataoka, M., Obara, Y. and Kuruppu, M. (2011), "Estimation of fracture toughness of anisotropic rocks by SCB test and visualization of fracture by means of X-ray CT", Proceedings of the 12th ISRM International Congress, Beijing, China, October.
49 Lim, I.L., Johnston, I.W., Choi, S.K. and Boland, J.N. (1994), "Fracture testing of a soft rock with semi-circular specimens under three-point loading, part 1-mode I", J. Rock Mech. Min. Sci., 31(3), 185-197.
50 Lim, I.L., Johnston, I.W. and Choi, S.K. (1993), "Stress intensity factors for semi-circular specimens under three-point bending", Eng. Fract. Mech., 44(3), 363-382.   DOI
51 Liu, X., Nie, Z., Wu, S. and Wang, C. (2015), "Self-monitoring application of conductive asphalt concrete under indirect tensile deformation", Case Studies Constr. Mater., 3, 70-77.   DOI
52 Lu, F.Y., Lin, Y.L., Wang, X.Y., Lu, L. and Chen, R. (2015), "A theoretical analysis about the influence of interfacial friction in SHPB tests", Int. J. Impact. Eng., 79, 95-101.   DOI
53 Maccagno, T.M. and Knott, J.F. (1989), "The fracture behaviour of PMMA in mixed modes I and II", Eng. Fract. Mech., 34(1), 65-86.   DOI
54 Mahajan, R.V. and Ravi-Chandar, K. (1989), "An experimental investigation of mixed-mode fracture", J. Fracture, 41(4), 235252.
55 Mobasher, B., Bakhshi, M. and Barsby, C. (2014), "Backcalculation of residual tensile strength of regular and high performance fibre reinforced concrete from flexural tests", Constr. Build. Mater., 70, 243-253.   DOI
56 Noel, M. and Soudki, K. (2014), "Estimation of the crack width and deformation of FRP-reinforced concrete flexural members with and without transverse shear reinforcement", Eng. Struct., 59, 393-398.   DOI
57 Mohammad, A. (2016), "Statistical flexural toughness modeling of ultra high performance concrete using response surface method", Comput. Concrete, 17(4), 33-39.
58 Molenar, A.A.A., Scarpas, A., Liu, X. and Erkens, S.M.J.G. (2002), "Semi-circular bending test: Simple but useful?", J. Assoc. Asph. Pav. Technol., 71, 794-815.
59 Najigivi, A., Nazerigivi, A. and Nejati, H.R. (2017), "Contribution of steel fiber as reinforcement to the properties of cement-based concrete: a review", Comput. Concrete, 20(2), 155-164.   DOI
60 Nazerigivi, A., Nejati, H.R., Ghazvinian, A. and Najigivi, A. (2017), "Influence of nano-silica on the failure mechanism of concrete specimens", Comput. Concrete, 19(4), 429-434.   DOI
61 Obara, Y., Kuruppu, M. and Kataoka, M. (2010), "Determination of fracture toughness of anisotropic rocks under water vapour pressure by semi-circular bend test", Proceedings of the Mine Planning and Equipment Selection, Victoria, Australia.
62 Obara, Y., Sasaki, K. and Yoshinaga, T. (2007), "Estimation of fracture toughness of rocks under water vapour pressure by semi-circular bend (SCB) test", J. MMIJ, 123(4-5), 145-151.   DOI
63 Obara, Y., Yoshinaga, T. and Hirata, A. (2009), "Fracture toughness in mode I and II of rock under water vapour pressure", Proceedings of the ISRM Regional Symposium EUROCK, Cavtat, Italy.
64 Ouchterlony, F. (1986), "Suggested methods for determining the fracture toughness of rock", J. Rock Mech. Min. Sci. Geomech. Abstr., 25(1), 71-96.
65 Oliveira, H.L., and Leonel, E.D. (2014), "An alternative BEM formulation, based on dipoles of stresses and tangent operator technique, applied to cohesive crack growth modeling", Eng. Anal. Bound. Elem., 41, 74-82.   DOI
66 Ouchterlony, F. (1980), A New Core Specimen for the Fracture Toughness Testing of Rock, Swedish Detonic Research Foundation Report, Stockholm, Sweden.
67 Ouchterlony, F. (1981), Extension of the Compliance and Stress Intensity Formulas for the Single Edge Crack Round Bar in Bending, ASTM STP 745.
68 Pan, B., Gao, Y. and Zhong, Y, (2014), "Theoretical analysis of overlay resisting crack propagation in old cement mortar pavement", Struct. Eng. Mech., 52(4) 167-181.,
69 Aliha, M.R., Bahmani, A. and Akhondi, S. (2015a), "Determination of mode III fracture toughness for different materials using a new designed test configuration", Mater. Design, 86, 863-871.   DOI
70 Akbas, S. (2016), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., 59(3), 66-78.
71 Aliha, M.R., Bahmani, A. and Akhondi, S. (2015b), "Numerical analysis of a new mixed mode I/III fracture test specimen", Eng. Fract. Mech., 134, 95-110.   DOI
72 Amrollahi, H., Baghbanan, A. and Hashemolhosseini, H. (2011), "Measuring fracture toughness of crystalline marbles under modes I and II and mixed mode I-II loading conditions using CCNBD and HCCD specimens", J. Rock Mech. Min. Sci., 48(7), 1123-1134.   DOI
73 Atkinson, B.K. (1987), Fracture Mechanics of Rock, Academic Press, London, U.K.
74 Ramadoss, P. and Nagamani, K. (2013), "Stress-strain behavior and toughness of high-performance steel fiber reinforced mortar in compression", Comput. Mortar, 11(2), 55-65.
75 Potyondy, D.O. and Cundall, P.A. (2004), "A bonded-particle model for rock", J. Rock Mech. Min. Sci., 41(8), 1329-1364.   DOI
76 Potyondy, D.O., Cundall, P.A. and Lee, C. (1996), "Modeling of rock using bonded assemblies of circular particles", Proceedings of 2nd North American Rock Mechanics Symposium, Montreal, Vancouver.
77 Rajabi, M., Soltani, N. and Eshraghi, I. (2016), "Effects of temperature dependent material properties on mixed mode crack tip parameters of functionally graded materials", Struct. Eng. Mech., 58(2), 144-156.
78 Sarfarazi, V. and Haeri, H. (2016c), "A review of experimental and numerical investigations about crack propagation", Comput. Concrete, 18(2), 235-266.   DOI
79 Sardemir, M., (2016), "Empirical modeling of flexural and splitting tensile strengths of concrete containing fly ash by GEP", Comput. Concrete, 17(4), 489-498.   DOI
80 Sarfarazi, V. and Haeri, H. (2016), "Effect of number and configuration of bridges on shear properties of sliding surface", J. Min. Sci., 52(2), 245-257.   DOI
81 Sarfarazi, V. and Shubert, W. (2016b), "Numerical simulation of tensile failure of concrete in direct, flexural, double punch tensile and ring tests", Period. Polyech. Civil Eng., 2, 1-8.
82 Sarfarazi, V., Faridi, H.R., Haeri, H. and Schubert, W. (2016c), "A new approach for measurement of anisotropic tensile strength of concrete", Adv. Concrete Constr., 3(4), 269-284.   DOI
83 Sarfarazi, V., Ghazvinian, A., Schubert, W., Blumel, M. and Nejati, H.R. (2014), "Numerical simulation of the process of fracture of echelon rock joints", Rock Mech. Rock Eng., 47(4), 1355-1371.   DOI
84 Barker, L.M. (1977), "A simplified method for measuring plane strain fracture toughness", Eng. Fract. Mech., 9(2), 361-369.   DOI
85 Atkinson, C., Smelser, R.E. and Sanchez, J. (1982), "Combined mode fracture via the cracked Brazilian disc test", J. Fracture, 18(4), 279-291.
86 Ayatollahi, M.R. and Alborzi, M.J. (2013), "Rock fracture toughness testing using SCB specimen", Proceedings of the 13th International Conference on Fracture, Beijing, China, June.
87 Banks-Sills, L. and Bortman, Y. (1986), "A mixed mode fracture specimen: Analysis and testing", J. Fracture, 30(3), 181-201.   DOI
88 Buchholz, F.G., Pirro, P.J.M., Richard, H.A. and Dreyer, K.H. (1987), "Numerical and experimental mixed-mode analysis of a compact tension-shear-specimen", Proceedings of the 4th International Conference Numerical Methods in Fracture Mechanics, Pineridge Press.
89 Chang, S.H., Lee, C.I. and Jeon, S. (2002), "Measurement of rock fracture toughness under modes I and II and mixed-mode conditions by using disc- type specimen", Eng. Geol., 66(1), 997.
90 Chong, K.P. and Kuruppu, M.D. (1984), "New specimen for fracture toughness determination for rock and other materials", J. Fracture, 26(2), 59-62.   DOI
91 Chong, K.P., Kuruppu, M.D. and Kuszmaul, J.S. (1987), "Fracture toughness determination of layered materials", Eng. Fract. Mech., 28(1), 43-54.   DOI
92 Cundall, P.A. and Strack, O. (1979), "A discrete element model for granular assemblies", Geotech., 29(1), 47-65.   DOI
93 Fan, Y., Zhu, Z., Kang, J. and Fu, Y. (2016), "The mutual effects between two unequal collinear cracks under compression", Math. Mech. Solids, 22,1205-1218
94 Dai, F., Chen, R., Iqbal, M.J. and Xia, K. (2010), "Dynamic cracked chevron notched Brazilian disc method for measuring rock fracture parameters", J. Rock Mech. Min. Sci., 47(4), 606613.