• Title/Summary/Keyword: Number concentration

Search Result 4,008, Processing Time 0.029 seconds

Characteristics of Nano-Particles Exhausted from Diesel Passenger Vehicle with DPF

  • Park, Yong-Hee;Shin, Dae-Yewn
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.6
    • /
    • pp.533-538
    • /
    • 2006
  • The nano-particles are known to influence the environmental protection and human health. The relationships between transient vehicle operation and nano-particle emissions are not well-known, especially for diesel passenger vehicles with DPF(Diesel Particulate Filter). In this study, two diesel passenger vehicles were measured on a chassis dynamometer test bench. The particulate matter (PM) emission of these vehicles was investigated by number and mass measurement. The mass of the total PM was evaluated using the standard gravimetric measurement method, and the total number concentrations were measured on a ECE15+EUDC driving cycle using Condensation Particle Counter (CPC). According to the investigation results, total number concentration was $1.14{\times}10^{11}$M and mass concentration was 0.71mg/km. About 99% of total number concentration was emitted during the $0{\sim}400s$ because of engine cold condition. In high temperature and high speed duration, the particulate matter was increased but particle concentration was emitted not yet except initial engine cold condition According to DPF performance deterioration, the particulate matter was emitted 2 times and particle concentration was emitted 32 times. Thus DPF performance deterioration affects particle concentration more than PM.

REYNOLDS NUMBER EFFECTS ON MASS TRANSFER IN TURBULENT PIPE FLOW: PART II. INSTANTANEOUS CONCENTRATION FIELD, HIGHER-ORDER STATISTICS AND MASS TRANSFER BUDGETS (난류 파이프 유동 내 물질전달에 대한 레이놀즈 수 영향: Part II. 순간농도장, 고차 난류통계치 및 물질전달수지)

  • Kang, Chang-Woo;Yang, Kyung-Soo
    • Journal of computational fluids engineering
    • /
    • v.17 no.3
    • /
    • pp.59-67
    • /
    • 2012
  • Large Eddy Simulation(LES) of turbulent mass transfer in fully developed turbulent pipe flow has been performed to study the effect of Reynolds number on the concentration fields at $Re_{\tau}=180$, 395, 590 based on friction velocity and pipe radius. Dynamic subgrid-scale models for the turbulent subgrid-scale stresses and mass fluxes were employed to close the governing equations. Fully developed turbulent pipe flows with constant mass flux imposed at the wall are studied for Sc=0.71. The mean concentration profiles and turbulent intensities obtained from the present LES are in good agreement with the previous numerical and experimental results currently available. The effects of Reynolds number on the turbulent mass transfer are identified in the higher-order statistics(Skewness and Flatness factor) and instantaneous concentration fields. The budgets of turbulent mass fluxes and concentration variance were computed and analyzed to elucidate the effect of Reynolds number on turbulent mass transfer. Furthermore, to understand the correlation between near-wall turbulence structure and concentration fluctuation, we present an octant analysis in the vicinity of the pipe wall.

An Effect of Heat Input on Thermal Storage for Horizontal Thermal Storage Tank with Heat pipe (열 파이프용 수평 축열조에서의 열 입력이 축열에 미치는 영향)

  • Pak, Ee-Tong;Jeong, Un-Chul
    • Solar Energy
    • /
    • v.16 no.2
    • /
    • pp.39-47
    • /
    • 1996
  • The horizontal thermal storage tank with heat pipe which is suitable for the sensible heat storage system is able to store a hot water from the heat source such as heating pad efficiently and to supply a hot water to load rapidly. And arrangement of heating pad play an important role in thermal flow and thermal storage efficiency. In this experiments, number of heating pad is ranged from three, five and nine, and when there is no change on number of heating pad, arrangements are two types of concentration-type and dispersion-type. Strong entrainment take place in the case of concentration-type of heating pad, and rapid temperature rise(${\Delta}{\doteqdot}1.6{\sim}3.2^{\circ}C$) in the tank is obtainable on the concentration-type than dispersion-type. In the constant number of heating pad, the concentration-type has the higher efficiency with about $5{\sim}6%$ than the dispersion-type Therefore, concentration-type of heating pad is an efficient design in constant number of heating pad.

  • PDF

Assessment of Indoor Air Quality of Subway - $CO_2$ Concentrations and Number of Passengers (전동차 객실의 실내공기질 평가 - $CO_2$ 농도와 승객 수)

  • Kwon, Soon-Bark;Cho, Young-Min;Park, Duck-Shin;Park, Eun-Young
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.671-674
    • /
    • 2007
  • With increasing concerns of indoor air quality, $CO_2$ concentration in the public transportation, such as train, bus, and subway, draws big interests. The $CO_2$ concentration in the indoor air is regarded as index of ventilation status rather than that of adverse health effect. In this study, we measured the time-series of $CO_2$ concentrations in the subway saloon at the Subway line 1 (Suwon-station to Cheongyangri-station) with the number of passengers on board. At the same time, the concentration of particulate matter (PM), temperature, and humidity were monitored. It was found that the $CO_2$ concentration was correlated linearly with number of passengers and the relation function is suggested for the prediction of $CO_2$ conecntration by the number of passengers.

  • PDF

Double-Diffusive Convection Due to Heating from Below in a Rotating Cylindrical Cavity (회전하는 원통형밀폐용기내의 아랫면가열에 의한 이중확산대류에 관한 실험적 연구)

  • 강신형;이태홍;이진호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1731-1740
    • /
    • 1995
  • Experimental investigations have been made to study the double-diffusive nature of convection of an initially stratified salt-water solution due to heating from below in a rotating cylindrical cavity. The objective is to examine the flow phenomena and the heat transfer characteristics according to the changes in temperature gradient, concentration gradient and rotating velocity of cavity. Thermal and solutal boundary conditions at side wall are adiabatic and impermeable, respectively. The top and bottom plate are maintained each at constant temperature and concentration. The cavity is put into a state of solid body rotation. Like the stationary case, the types of initially-formed flow pattern are classified into three regimes depending on the effective Rayleigh number and Taylor number; stagnant flow regime, single mixed-layer flow regime and successively formed multi-mixed layer flow regime. At the same effective Rayleigh number, the number of initially-formed mixed layer and its growth rate decrease as the effect of rotation increases. The temperature and concentration profiles are both uniform in each layer due to convective mixing in the layered-flow regime, but look both liner in stagnant flow regime and single mixed-layer flow regime. At the interface between adjacent layers, the temperature changes smoothly but the concentration changes rapidly.

The assessment of the performance of drug-eluting stent using computational fluid dynamics

  • Seo, Tae-Won;Barakat, Abdul I.
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.4
    • /
    • pp.281-288
    • /
    • 2009
  • Numerical investigations have been conducted on the assessment of the performance of drug-eluting stent. Computational fluid dynamics is applied to investigate the flow disturbances and drug distributions released from the stent in the immediate vicinity of the given idealized stent in the protrusion into the flow domain. Our simulations have revealed the drug concentration in the flow field due to the presence of a drug-eluting stent within an arterial segment. Wall shear stress increases with Reynolds number for a given stent diameter, while it increases with stent diameter for a given Reynolds number. The drug concentration is dependent on both Reynolds number and stent geometry. In pulsatile flow, the minimum drug concentration in the zone of inter-wire spacing occurs at the maximum acceleration of the inlet flow while the maximum drug concentration gains at the maximum deceleration of the inlet flow. These results provide an understanding of the flow physics in the vicinity of drug-eluting stents and suggest strategies for optimal performance of drug-eluting stent to minimize flow disturbance.

Correlation of $CO_2$ Concentration with Number of Passengers and Tunnel Regions in the KTX Cabin (KTX 객실의 $CO_2$ 농도와 승객 수 및 터널구간과의 상관관계)

  • Kwon, Soon-Bark;Cho, Young-Min;Park, Duck-Shin;Park, Eun-Young
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.192-195
    • /
    • 2006
  • With increasing concerns of indoor air quality, $CO_2$ concentration in the public transportation, such as train, bus, and subway, draws big interests. The $CO_2$ concentration in the indoor air is regarded as index of ventilation status rather than that of adverse health effect. In this study, we measured the time-series of $CO_2$ concentrations in the KTX cabin during the journey of Gyongbu-line (Seoul-Busan) and Honam-line (Seoul-Mokpo) with the number of passengers on board. At the same time, the concentration of particulate matter (PM), temperature, humidity and gaseous pollutants including HCHO and VOCs were monitored. It is found that the $CO_2$ concentration was correlated linearly with number of passengers and was highly correlated with tunnel regions where the ventilation unit (flap) was closed.

  • PDF

A study on the relationship between the concentration status of inpatient services and medical charges per case between 2009 and 2011 (입원서비스의 집중화 수준과 진료비 간의 관계 분석: 2009년~2011년)

  • Kwak, Jin-Mi;Lee, Kwang-Soo;Kwon, Hyuk-Jun
    • Knowledge Management Research
    • /
    • v.16 no.1
    • /
    • pp.209-224
    • /
    • 2015
  • Previous studies provided that limiting the number of services provided in hospital had influences in decreasing cost in delivering medical services. Hospitals could have positive effects on their profit by concentrating small number of services which they have comparative advantages. This study purposed to analyze the relationship between the concentration status of hospitals and medical charge for inpatients. National Inpatient sample data provided by the Health Insurance Review and Assessment Service (HIRA) for three years, 2009 to 2011 was used to compute the three concentration indices (Information Theory Index (ITI), Internal Herfindahl Index (IHI), and number of distinct Diagnosis-Related Groups (DRGs) treated) and total medical charge per inpatient case in each year. It was also used to select the control variables such as bed size, number of doctors per 100 beds, and locations. The ordinary least square regression models were developed and tested for hospital and general hospitals separately. The results showed that the total medical charge per inpatient case was significantly differed depending on the concentration indices, and there were positive relationships in ITI and IHI. The number of distinct DRGs had different directions in regression coefficients depending on the locations and hospital types. Hospitals had larger absolute standardized regression coefficients compare to those of general hospitals. However, their effects could be varied by the hospital types, number of doctors, and locations. It seems that hospitals have more influences on medical charges by concentrating their services than general hospitals. Study results provide knowledges to hospital administrators that concentration strategy can positive influences on the performance of small size hospitals.

Production of Bacillus thuringiensis Spore Using an Industrial Medium (산업용 배지를 이용한 Bacillus thuringiensis의 포지생산)

  • 최성호;강석권;유연우
    • KSBB Journal
    • /
    • v.13 no.6
    • /
    • pp.644-648
    • /
    • 1998
  • In the production of a low cost bacterial insecticide, it is important to produce a high spore concentration using low price substrates. Experiments were carried out to investigate the effects of the addition of mineral salts and glucose, and of dissolved oxygen concentration on the cell growth and spore formation of Bacillus thuringiensis var aizawai using a cheap wheat and soybean meal in the batch culture. The maximum viable cell number was 1.2${\times}$109 CFU/mL at 12 hr culture and spore yield was 54.2% at 74 hr culture using an industrial medium containing 20 g/L wheat meal and 30 g/L soybean meal under 1.0 vvm aeration and 200 rpm agitation. The cell growth and the spore formation were not enhanced by the addition of mineral salts in industrial medium, whereas th addition of 10g/L glucose decreased the cell growth and spore formation. We could obtain a maximum viable cell number of 2.2${\times}$109 CFU/mL and spore number of 1.9${\times}$109 CFU/mL at the dissolved oxygen concentration of 60% of saturation. The spore concentration was enhanced approximately by 2 times as compared to the dissolved oxygen concentration of 50%. In the bench-scale culture, the maximum viable cell and spore number were 2.5${\times}$109 CFU/mL, and 2.2${\times}$109 CFU/mL, respectively under 1.0 vvm aeration and 400 rpm agitation. The spore yield was 88% based on the maximum viable cell number. As a result, it was confirmed that the production of high spore concentration could be obtained by a bench-scale culture using an industrial medium.

  • PDF

Comparison of the Number Concentration and the Chemical Composition of the Atmospheric PM2.5 in Jeju Area

  • Kang, Chang-Hee;Hu, Chul-Goo
    • Journal of Environmental Science International
    • /
    • v.23 no.5
    • /
    • pp.743-753
    • /
    • 2014
  • The number concentrations and the water soluble ionic concentrations of $PM_{2.5}$ have measured at Gosan site in Jeju, Korea, from March 2010 to December 2010, to clarify their characteristics. $PM_{2.5}$ number concentrations vary from 22.57 to $975.65particles/cm^3$ with an average value of $240.41particles/cm^3$, which have been recorded evidently high in spring season as compared with those in other season. And the concentrations in small size ranges are greatly higher than those in large size ranges, so the number concentration in the size range $0.25{\sim}0.45{\mu}m$ has more than 94% of the total number concentration of $PM_{2.5}$. The major ionic components in $PM_{2.5}$ are $SO{_4}^{2-}$, $NH_4{^+}$ and $NO_3{^-}$, which are mainly originated from anthropogenic sources, on the other hand, the concentrations of $Cl^-$, $K^+$, $Ca^{2+}$ and $Mg^{2+}$ are recorded relatively lower levels. The concentrations of the major ionic components are very high in spring season, but the concentration levels of the other components are recorded significantly high in winter season. On the other hand, in summer season, the lowest concentration levels are observed for overall components as well as the sum of them. The concentration ratios of nss-$SO{_4}^{2-}/SO{_4}^{2-}$ and nss-$Ca^{2+}/Ca^{2+}$ are 98.1% and 88.9%. And the concentration ratio of $SO{_4}^{2-}/NO_3{^-}$(3.64) is greatly higher than the value in urban area due to no large $NO_x$ emission sources in the measurement. In addition, the correlation and the factor analysis for the number and the ionic concentrations of $PM_{2.5}$ are performed to identify their sources. From the Pearson correlation analysis and the factor analysis, it can be suggested that the smaller parts(< $0.5{\mu}m$) of $PM_{2.5}$ is contributed by anthropogenic sources, but the sources of the remaining larger parts of $PM_{2.5}$ are not able to be specified sources in this study.