This paper proposes a new method for the number recognition on dot matrix LED display. The proposed method uses morphological processing that dilates dots of numbers and connects the dots into strokes. The size of numbers is normalized using horizontal projection because the gaps of dots are different according to the size of numbers. The numbers are segmented by connected component analysis and finally, template matching method recognizes the segmented numbers. The proposed method is implemented using C language in Raspberry Pi system with a camera module for a real-time image processing. Experiments were conducted by using various dot matrix LED displays. The results show that the proposed method is successful for the number recognition on dot matrix LED display.
본 논문에서는 Generalized Hough Transform (GHT)와 Chamfer 정합(Chamfer matching)방법을 결합하여, 두 방법의 약점을 보완하는 새로운 이차원 에지기반 매칭기법이 제시된다. 먼저, GHT를 적용하여, 물체의 대략적인 위치와 방향을 추정하고, 이를 시작점으로 하여, 보다 정확한 위치와 방향을 Chamfer 정합기법을 적용하여 찾았다. 끝으로, 서브픽셀(subpixel) 알고리즘을 사용하여, 매칭정확도를 향상시켰다. 제안된 알고리즘은 다양한 전자부품 영상에 대해 실험한 결과 좋은 결과를 나타내었다.
고차모드를 고려하여 단순확장관을 해석한 많은 선행연구가 이루어 졌고, 이러한 연구는 모드적합법, 속도포텐셜법, 유한요소법으로 분류할 수 있다. 이들 중 모드적합법은 동심관형확장관을 해석하는 데 유용하다. 일반적으로 입·출구의 단면적이 중간확장관의 단면적보다 작으므로 입·출구에 고려하는 고차모드의 개수는 중간확장관에 고려하는 고차모드의 개수보다 작을 수 있다. 그러나 모드적합법은 입·출구와 중간확장관에 같은 개수의 고차모드를 사용하여야 한다. 그래서 입·출구에 불필요한 고차모드를 포함하게 되어 계산시간을 늘이는 결과를 초래한다. 본 논문에서는 입구, 중간확장관 그리고 출구에 각각 임의의 고차모드의 개수를 선택할 수 있는 새로운 방법을 제시하였다. 그리고 이 방법의 정확성을 검증하기 위하여 전통적인 모드적합법, 유한요소법과 비교하였고, 이 새로운 방법이 계산시간을 줄일 수 있다는 것을 보였다.
패턴 매칭(Pattern Matching)은 네트워크 침입방지 시스템에서 가장 중요한 부분의 하나며 많은 연산을 필요로 한다. 날로 증가되는 많은 수의 공격 패턴을 다루기 위해, 네트워크 침입방지 시스템에서는 회선 속도로 들어오는 패킷을 처리 할 수 있는 다중 패턴 매칭 방법이 필수적이다. 본 논문에서는 현재 많이 사용되고있는 네트워크 침입방지 및 탐지 시스템인 Snort와 이것의 패턴 매칭 특성을 분석한다. 침입방지 시스템을 위한 패턴 매칭 방법은 다양한 길이를 갖는 많은 수의 패턴과 대소문자 구분 없는 패턴 매칭을 효과적으로 다룰 수 있어야 한다. 또한 여러 개의 입력 문자들을 동시에 처리 할 수 있어야 한다. 본 논문에서 Shift-OR 패턴 매칭 알고리즘에 기반을 둔 다중 패턴 매칭 하드웨어 가속기를 제시하고 여러 가지 가정 하에서 성능 측정을 하였다. 성능 측정에 따르면 제시된 하드웨어 가속기는 현재 Snort에서 사용되는 가장 빠른 소프트웨어 다중 패턴 매칭 보다 80배 이상 빠를 수 있다.
An active research area in computer vision, stereo matching is aimed at obtaining three-dimensional (3D) information from a stereo image pair captured by a stereo camera. To extract accurate 3D information, a number of studies have examined stereo matching algorithms that employ adaptive support weight. Among them, the adaptive census transform (ACT) algorithm has yielded a relatively strong matching capability. The drawbacks of the ACT, however, are that it produces low matching accuracy at the border of an object and is vulnerable to noise. To mitigate these drawbacks, this paper proposes and analyzes the features of an improved stereo matching algorithm that not only enhances matching accuracy but also is also robust to noise. The proposed algorithm, based on the ACT, adopts the truncated absolute difference and the multiple sparse windows method. The experimental results show that compared to the ACT, the proposed algorithm reduces the average error rate of depth maps on Middlebury dataset images by as much as 2% and that is has a strong robustness to noise.
Purpose: Recently, propensity score matching method is used in a large number of research paper, nonetheless, there is no research using fitness test of before and after propensity score matching. Therefore, comparing fitness of before and after propensity score matching by logistic regression analysis using data from 'online survey of adolescent health' is the main significance of this research. Method: Data that has similar propensity in two groups is extracted by using propensity score matching then implement logistic regression analysis on before and after matching separately. Results: To test fitness of logistic regression analysis model, we use Model summary, -2Log Likelihood and Hosmer-Lomeshow methods. As a result, it is confirmed that the data after matching is more suitable for logistic regression analysis than data before matching. Conclusion: Therefore, better result which has appropriate fitness will be shown by using propensity score matching shows better result which has better fitness.
The scan matching is widely used in localization and mapping of mobile robots. This paper presents a probabilistic scan matching method. To improve the performance of the scan matching, a direction of data point is incorporated into the scan matching. The direction of data point is calculated using the line fitted by the neighborhood data. Owing to the incorporation, the performance of the matching was improved. The number of iterations in the scan matching decreased, and the tolerance against a high rotation between scans increased. Based on real data of a laser range finder, experiments verified the performance of the proposed direction augmented probabilistic scan matching algorithm.
For $r{\geq}2$, let ${\mathcal{H}}$ be an r-uniform hypergraph with n vertices and m hyperedges. Let R be a random vertex set obtained by choosing each vertex of ${\mathcal{H}}$ independently with probability p. Let ${\mathcal{H}}[R]$ be the subhypergraph of ${\mathcal{H}}$ induced on R. We obtain an upper bound on the matching number ${\nu}({\mathcal{H}}[R])$ and a lower bound on the independence number ${\alpha}({\mathcal{H}}[R])$ of ${\mathcal{H}}[R]$. First, we show that if $mp^r{\geq}{\log}\;n$, then ${\nu}(H[R]){\leq}2e^{\ell}mp^r$ with probability at least $1-1/n^{\ell}$ for each positive integer ${\ell}$. It is best possible up to a constant factor depending only on ${\ell}$ if $m{\leq}n/r$. Next, we show that if $mp^r{\geq}{\log}\;n$, then ${\alpha}({\mathcal{H}}[R]){\geq}np-{\sqrt{3{\ell}np\;{\log}\;n}-2re^{\ell}mp^r$ with probability at least $1-3/n^{\ell}$.
도시기반시설에 첨단 정보통신기술을 융합하여 언제 어디서나 자유롭게 서비스를 제공하고자 하는 U-City(Ubiquitous City)의 공간정보기술은 다양한 형태로 서비스 되고 있다. 그 중에서도 U-City에서 가장 많이 설치되어 있는 CCTV(Closed Circuit TV)의 스테레오 영상을 가지고 특징점(Key Point)을 선정하여 정합(Matching)하고 3차원 공간정보를 구축하는 연구가 진행되고 있다. 하지만 대부분 정합점을 추출하는데 사용된 데이터는 조도와 같은 외부 환경영향을 고려하지 않고 있다. 본 논문은 동일한 하드웨어에서 조도의 변화에 의해 영상의 질이 좌우되는 CCTV를 가지고 3차원 공간정보를 구축하는데 필요한 정합점이 조도에 따라 얼마나 변화 하는지 실험을 하였다. 조도에 따른 정합점 수의 분석 결과, 카메라의 조리개, 셔터속도, 감도를 고정하였을 때 3,000Lux까지 정합점 수가 조도에 비례하여 높아 졌으며, 물체와 배경의 경계가 뚜렷해졌다. 반대로 빛이 과도하게 들어 왔을 경우 화면이 밝이지며, 노이즈가 발생하고 사물과 사물의 경계가 없어져 특징점을 선정하기가 힘들었다. 본 논문에서 얻어진 결과를 이용하여 촬영할 경우 향상된 정합점을 가질 수 있을 것으로 기대된다.
본 논문은 헤드 트랙커(Head Tracker) 시스템에 패턴 매칭을 적용한 연구이다. 제안하는 알고리즘은 패턴을 통하여 헤드 트랙커의 초기자세를 빠르고 쉽게 획득하는 것이다. 광학 방식 헤드 트랙커는 적외선 LED(특징점)를 헬멧에 부착하고, 스테레오 카메라로 영상을 획득한다. 영상 분석시 발생하는 특징점간 거리 오차율을 바탕으로 패턴을 이루며 특징점을 부착한다. 특징점간 거리를 이용해 패턴 분석을 하고, 획득된 패턴을 바탕으로 특징점에 고유 번호를 부여한다. 맵 데이터와 특징점 고유 번호를 비교함으로써 헤드 트랙커의 초기자세를 추정한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.