• Title/Summary/Keyword: Nucleoside

Search Result 284, Processing Time 0.023 seconds

Induction of Apoptosis and G2/M Cell Cycle Arrest by Cordycepin in Human Prostate Carcinoma LNCap Cells (Cordycepin에 의한 LNCap 인체 전립선 암세포의 apoptosis 및 G2/M arrest 유발)

  • Lee, Hye Hyeon;Hwang, Won Deok;Jeong, Jin-Woo;Park, Cheol;Han, Min Ho;Hong, Su Hyun;Jeong, Yong Kee;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.24 no.1
    • /
    • pp.92-97
    • /
    • 2014
  • Cordycepin, an active component originally isolated from the traditional medicine Cordyceps militaris, is a derivative of the nucleoside adenosine, which has been shown to possess a number of pharmacological properties, including antioxidant and anti-inflammatory activities, immunological stimulation, and antitumor effects. This study was conducted on cultured human prostate carcinoma LNCap cells to elucidate the possible mechanisms by which cordycepin exerts its anticancer activity, which, until now, has remained poorly understood. Cordycepin treatment of LNCap cells resulted in dose-dependent inhibition of cell growth and the induction of apoptotic cell death as detected by an MTT assay, cleavage of poly ADP-ribose polymerase, and annexin V-FITC staining. Flow cytometric analysis revealed that cordycepin resulted in G2/M arrest in cell cycle progression and downregulation of cyclin B1 and cyclin A expression in a concentration-dependent manner. Moreover, the incubation of cells with cordycepin caused a striking induction in the expression of the cyclin-dependent kinase (CDK) inhibitor p21Waf1/Cip1 without affecting the expression of the tumor suppressor p53. It also resulted in a significant increase in the binding of CDK2 and CDC2 to p21. These findings suggest that cordycepin-induced G2/M arrest and apoptosis in human prostate carcinoma cells is mediated through p53-independent upregulation of the CDK inhibitor p21.

Antiviral Effect of Retro-2.1 against Herpes Simplex Virus Type 2 In Vitro

  • Dai, Wenwen;Wu, Yu;Bi, Jinpeng;Wang, Jingyu;Wang, Shuai;Kong, Wei;Barbier, Julien;Cintrat, Jean-Christophe;Gao, Feng;Jiang, Zhengran;Gillet, Daniel;Su, Weiheng;Jiang, Chunlai
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.6
    • /
    • pp.849-859
    • /
    • 2018
  • Herpes simplex virus type 2 (HSV-2) infection has been a public health concern worldwide. It is the leading cause of genital herpes and a contributing factor to cervical cancer and human immunodeficiency virus (HIV) infection. No vaccine is available yet for the treatment of HSV-2 infection, and routinely used synthetic nucleoside analogs have led to the emergence of drug resistance. The small molecule $Retro-2^{cycl}$ has been reported to be active against several pathogens by acting on intracellular vesicle transport, which also participates in the HSV-2 lifecycle. Here, we showed that Retro-2.1, which is an optimized, more potent derivative of $Retro-2^{cycl}$, could inhibit HSV-2 infection, with 50% inhibitory concentrations of $5.58{\mu}M$ and $6.35{\mu}M$ in cytopathic effect inhibition and plaque reduction assays, respectively. The cytotoxicity of Retro-2.1 was relatively low, with a 50% cytotoxicity concentration of $116.5{\mu}M$. We also preliminarily identified that Retro-2.1 exerted the antiviral effect against HSV-2 by a dual mechanism of action on virus entry and late stages of infection. Therefore, our study for the first time demonstrated Retro-2.1 as an effective antiviral agent against HSV-2 in vitro with targets distinct from those of nucleoside analogs.

Synthesis of a series of cis-diamminaedichloro-platinum (II) Complexes Linked to Uracil and Uridine as Candidate An-titumor Agents.

  • Kim, Jack-C.;Kim, Mi-Hyang;Kim, Seon-Hee;Choi, Soon-Kyu
    • Archives of Pharmacal Research
    • /
    • v.18 no.6
    • /
    • pp.449-453
    • /
    • 1995
  • The search for patinum (II)-based compounds with improved therapeutic properties was prompted to design and synthesize a new family of water-soluble, third generation cis-diamminedichlorplatinum (II) complexes linked to uracil and uridine. Six heretofore undescribed uracil and uridine-platinum (II) complexes are ; [N-(2-aminoethyl)uracil-5-carboxamide]dichloroplatinum (II)(3a), [N-2(2-aminoethyl)uracil-6-carboxmide]dichloroplatinum (II) (3b),[5-(2-aminorthyl)carbamoyl-2',3',5',-tri-O-acetyluridine] dichloroplatinum (II) (6b), [5-(2-aminoethyl)-carbamoyl]-2',3',5',-tri-O-acetyluridine] dichloroplatinum (II) (6b), [5-(2-aminoethyl)carbamoylu-ridine]dihloroplatinum (II) (7a), [6-(2-aminoethyl)carbamoyluridine]dichloroplatinum (II) (7b). These analogues were prepared from the key starting materials, 5-carboxyuracil (1a) and 6-carboxyuracil (1b) which were reacted with ethylenediamine to afford the respective N-(2-aminoethyl)uracil-5-carboxmide (2a) land N-(2-aminoethyl)uracil-6-carboxamide (2b). The cisplatin complexes 3a and 3b were obtained through the reaction of the respective 2a and 2b ficiently introduced on the .betha.-D-ribose ring via a Vorbruggen-type nucleoside coupling procedure with hexamethyldisilazane, trimethylchlorosilane and stannicchloride under anhydrous acetonitfile to yield the sterospecific .betha.-anomeric 5-carboxy-2',3',5'-tri-O-acetyluridine (4a) and 6-carboxy-2',3',5'-tri-O-acetyluridine (4b), respective 5-(2-aminoethyl)carbamoyl-2',3',5'-tri-O-acetyluridine (5a) and 6-(2-aminoethyl)carbamoyl-2',3',5'-tri-O-acetyluridine (5b). The diamino-uridines 5a and 5b were reacted with potassium tetrachloroplatinate (II) to give the novel nucleoside complexes, 6a and 6b respectively which were deacetylated into the free nucleosides, 7a and 7b by the treatment with CH/sub 3/ONa. The antitumor activities were evaluated against three cell lines (K-562, FM-3A and P-388).

  • PDF

Synthesis and Antitumor Evaluation of cis-(1,2-Diaminoethane) dichloroplatinum (II) Complexes Linked to 5- and 6-Methyleneuracil and -uridine Analogues

  • Kim, Jack-C.;Lee, Min-Hwa;Choi, Soon-Kyu
    • Archives of Pharmacal Research
    • /
    • v.21 no.4
    • /
    • pp.465-469
    • /
    • 1998
  • The search for platinum (II)-based compounds with improved therapeutic properties was prompted to design and synthesize a new family of water-soluble, third generation cis-diaminedichloroplatinum (II) complexes linked to uracil and uridine. Six heretofore unreported uracil and uridine-platinum (II) complexes are; [N-(uracil-5-yl-methyl)ethane-1,2-di-amine]dichloroplatinum (II) (3a), [N-(uracil-6-yl-methyl)ethane-1,2-diaminel dichloroplatinum (II) (3b), t[N-($2^1$, $3^1$,$5^1$-tri-O-acetyl)uridine-5-yl-methyl] ethane-1,2-diamineldichloroplatinum (II) (6a), {[N-($2^1$,$3^1$, $5^1$-tri-O-acetyl) uridine-6-yl-methyl]ethane-1,2-diamine)dichloroplatinum (II) (6b),[N-(uridine- 5-yl-methyl)ethane-1,2-diamine]dichloroplatinum (II) (7a), [N-(uridine-6-yl- methyl)ethane-1,2-diamine]dichloroplatinum (II) (7b). These analogues were prepared from the key starting materials, 5-chloromethyluracil (1a) and 6-chloromethyluracil (1b) which were reacted with ethylenediamine to afford the respective 5-[(2-aminoethyl)aminol methyluracil (2a) and 6-[(2-aminoethyl)amino]methyluracil (2b). The cis-platin complexes 3a and 3b were obtained through the reaction of the respective 2a and 2b with potassium tetrachloroplatinate (II). The heterocyclic nucleic acid bases 1a and 1b were efficiently introduced on the .betha.-D-ribose ring via a Vorbruggen-type nucleoside coupling procedure with hexamethyldisilazane, trimethylchlorosilane and stannic chloride under anhydrous acetonitrile to yield the stereospecific .betha.-anomeric 5-chloromethyl- $2^1$,$3^1$,$5^1$-tri-O-acetyluridine (4a) and 6-chloromethyl-$2^1$,$3^1$,$5^1$-tri-O-acetyluridine (4b), respectively. The nucleosides 4a and 4b were coupled with ethylenediamine to provide the respective 5-[(amino-ethyl)aminolmethyl-$2^1$,$3^1$,$5^1$-tri-O-acetyluridine (5a) and 6-[(aminoethyl)amino] methyl-$2^1$,$3^1$,$5^1$-tri-O-acetyluridine (5b). The diamino-uridines 5a and 5b were reacted with potassium tetrachloroplatinate (II) to give the novel nucleoside complexes, 6a and 6b, respectively which were deacetylated into the free nucleosides, 7a and 7b by the treatment with CH$_{3}$ONa. The cytotoxic activities were evaluated against three cell lines (FM-3A, P-388 and J-82) and none of the synthesized compounds showed any significant activity.

  • PDF

Induction of Apoptotic Cell Death by Cordycepin, an Active Component of the Fungus Cordyceps militaris, in AGS Human Gastric Cancer Cells (동충하초 유래 cordycepin에 의한 AGS 인체 위암세포의 apoptosis 유발)

  • Lee, Hye Hyeon;Jeong, Jin-Woo;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.26 no.7
    • /
    • pp.847-854
    • /
    • 2016
  • Cordycepin, a derivative of the nucleoside adenosine, is one of the active components extracted from fungi of genus Cordyceps, and has been shown to have many pharmacological activities. In this study, we investigated the effects of cordycepin on proliferation and apoptosis of human gastric cancer AGS cells, and its possible mechanism of action. Treatment of cordycepin resulted in significant decrease in cell viability of AGS cells in a concentration-dependent manner. A concentration-dependent apoptotic cell death was also measured by agarose gel electrophoresis and flow cytometery analysis. Molecular mechanistic studies of apoptosis unraveled cordycepin treatment resulted in an enhanced expression of tumor necrosis factor-related apoptosis-inducing ligand, death receptor 5 and Fas ligand. Furthermore, up-regulation of pro-apoptotic Bax, and down-regulation of anti-apoptotic Bcl-2 and Bcl-xL expression were also observed in cordycepin-treated AGS cells. These were followed by activation of caspases (caspase-9, -8 and -3), subsequently leading to poly (ADP-ribose) polymerase cleavage. Taken together, these findings indicate that cordycepin induces apoptosis in AGS cells through regulation of multiple apoptotic pathways, including death receptor and mitochondria. Although further mechanical studies are needed, our results revealed that cordycepin can be regarded as a new effective and chemopreventive compound for human gastric cancer treatment.

Metagenomic Analysis of Antarctic Penguins Gut Microbial Dynamics by using Fecal DNA of Adélie (Pygoscelis adeliae) and Emperor (Aptenodytes forsteri) Penguins in Ross Sea, Antarctica (남극 로스해 지역의 아델리펭귄과 황제펭귄 분변 유전자를 활용한 남극 펭귄 장내 미생물의 메타지놈 분석)

  • Soyun Choi;Seung Jae Lee;Minjoo Cho;Eunkyung Choi;Jinmu Kim;Jeong-Hoon Kim;Hyun-Woo Kim;Hyun Park
    • Journal of Marine Life Science
    • /
    • v.8 no.1
    • /
    • pp.43-49
    • /
    • 2023
  • This study applied a metagenomic analysis of the penguins' gut microbiome from fecal samples of Adélie Penguin (Pygoscelis adeliae) and Emperor Penguin (Aptenodytes forsteri) living along the Ross Sea, Antarctica. As a result of taxonomic analysis, 7 phyla and 18 families were mainly present in the gut microbiome of Adélie and Emperor penguins. To assess microbial diversity, we performed alpha diversity and OTU abundance analyses. It was confirmed that the Adélie Penguin's gut microbial species had a higher diversity than Emperor Penguin's. Based on the Beta diversity analysis using PCoA, differences were observed in the clustering between Adélie and Emperor penguins, respectively. Through the KEGG pathway analysis using PICRUSt, the nucleoside and nucleotide biosynthesis pathway was the most prevalent in Adélie and Emperor penguins. This study enabled a comparison and analysis of the composition and diversity of the gut microbiome in Adélie and Emperor Penguins. It could be utilized for future research related to penguin feeding habits and could serve as a foundation for analyzing the gut microbiomes of various other Antarctic organisms.

Anti-Varicella Zoster Virus Activity of Water Soluble Substance from Elfvingia applanata Alone and in Combinations with Acyclovir and Vidarabine

  • Kim, Soo-Dong;Eo, Seong-Kug;Kim, Young-So;Han, Seong-Sun
    • Natural Product Sciences
    • /
    • v.5 no.2
    • /
    • pp.107-111
    • /
    • 1999
  • To investigate less toxic antiviral agents from Basidiomycetes, EA, the water soluble substance, was isolated from the carpophores of Elfvingia applanata (pers.) Karst. Anti-varicella zoster virus (Oka strain; anti-VZV/Oka) activity of EA was examined in MRC-5 cells by plaque reduction assay in vitro. And the combined antiviral effects of EA with nucleoside anti-VZV agents, acyclovir and vidarabine, were examined on the multiplication of VZV/Oka. EA exhibited a concentration-dependent reduction in the plaque formation of VZV/Oka with a 50% effective concentration $(EC_{50})$ of $464.14\;{\mu}g/ml$. The results of combination assay were evaluated by the combination index (CI) that was calculated by the multiple drug effect analysis. The combination of EA with acyclovir showed more potent synergism with CI values of $0.18{\sim}0.62$ for $50{\sim}90%$ effective levels than that of EA with vidarabine with CI values of $0.67{\sim}1.04$.

  • PDF

Role of Kupffer Cells in Cold/warm Ischemia-Reperfusion Injury or Rat Liver

  • Lee, Young-Goo;Lee, Sang-Ho;Lee, Sun-Mee
    • Archives of Pharmacal Research
    • /
    • v.23 no.6
    • /
    • pp.620-625
    • /
    • 2000
  • The mechanisms of liver injury from cold storage and reperfusion are not completely under-stood. The aim of the present study was to investigate whether the inactivation of Kupffer cells (KCs) by gadolinium chloride ($GdCl_3$) modulates ischemia-reperfusion injury in the rat liver. Hepatic function was assessed using an isolated perfused rat liver model. In livers subjected to cold storage at $4^{\circ}C$ in University of Wisconsin solution for 24 hrs and to 20 min rewarm-ing ischemia, oxygen uptake was markedly decreased, Kupffer cell phagocytosis was stimulated, releases of purine nucleoside phosphorylase and lactate dehydrogenase were increased as compared with control livers. Pretreatment of rats with $GdCl_3$) , a selective KC toxicant, suppressed kupffer cell activity, and reduced the grade of hepatic injury induced by ischemia-reperfusion. While the initial mixed function oxidation of 7-ethoxycoumarin was not different from that found in the control livers, the subsequent conjugation of its meta-bolite to sulfate and glucuronide esters was suppressed by ischemia-reperfusion, CdCl$_3$restored sulfation and glucuronidation capacities to the level of the control liver. Our findings suggest that Kupffer cells could play an important role in cold/warm ischemia-reperfusion hepatic injury.

  • PDF

Authentication and quality control of Cordyceps sinensis, a traditional Chinese medicine known as winter-worm summer-grass

  • Cheung, Jerry KH;Li, Shao P;Tsim, Karl WK
    • Advances in Traditional Medicine
    • /
    • v.5 no.4
    • /
    • pp.262-271
    • /
    • 2005
  • Cordyceps, one of the most valued traditional Chinese medicines, consists of the dried fungus Cordyceps sinensis growing on the larva of caterpillar. It is also known as 'winter-worm and summer-grass' because of its appearance during different seasons. The parasitic complex of the fungus and the caterpillar is found in soil of a prairie at an elevation of 3,500 to 5,000 meters in northwestern part of China. According to Chinese medicinal theory, Cordyceps is used to replenish the kidney and soothe the lung, and indeed many clinical applications have been reported. The natural Cordyceps is rare and expensive on the local market, and therefore, several mycelial strains have been isolated from natural Cordyceps and manufactured in large quantities by fermentation technology, and they are commonly sold as health food products in Orient. The adulterants of Cordyceps are commonly found on the market, and therefore the authentication of these products has to be defined. Having the urgent need from current market, different chemical markers such as nucleoside, ergosterol, mannitol and polysaccharide are being used for quality control of Cordyceps. Unfortunately, these markers are far from optimization, and therefore extensive works are needed to define the pharmacological efficiency of these markers.

sanN Encoding a Dehydrogenase is Essential for Nikkomycin Biosynthesis in Streptomyces ansochromogenes

  • Ling, Hong-Bo;Wang, Guo-Jun;Li, Jin-E;Tan, Hua-Rong
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.397-403
    • /
    • 2008
  • Nikkomycins are a group of peptidyl nucleoside antibiotics with potent fungicidal, insecticidal, and acaricidal activities. sanN was cloned from the partial genomic library of Streptomyces ansochromogenes 7100. Gene disruption and complementation analysis demonstrated that sanN is essential for nikkomycin biosynthesis in S. ansochromogenes. Primer extension assay indicated that sanN is transcribed from two promoters (sanN-P1 and sanN-P2), and sanN-P2 plays a more important role in nikkomycin biosynthesis. Purified recombinant SanN acts as a dehydrogenase to convert benzoate-CoA to benzaldehyde in a random-order mechanism in vitro, with respective $K_{cat}/K_m$$ values of $3.8mM^{-1}s^{-1}\;and\;12.0mM^{-1}s^{-1}$ toward benzoate-CoA and NADH, suggesting that SanN catalyzes the formation of picolinaldehyde during biosynthesis of nikkomycin X and Z components in the wild-type stain. These data would facilitate us to understand the biosynthetic pathway of nikkomycins and to consider the combinatorial synthesis of novel antibiotic derivatives.