Browse > Article
http://dx.doi.org/10.4014/jmb.1712.12052

Antiviral Effect of Retro-2.1 against Herpes Simplex Virus Type 2 In Vitro  

Dai, Wenwen (National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University)
Wu, Yu (Joliot, CEA, LabEx LERMIT, Universite Paris-Saclay)
Bi, Jinpeng (National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University)
Wang, Jingyu (National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University)
Wang, Shuai (National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University)
Kong, Wei (National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University)
Barbier, Julien (Joliot, CEA, LabEx LERMIT, Universite Paris-Saclay)
Cintrat, Jean-Christophe (Joliot, CEA, LabEx LERMIT, Universite Paris-Saclay)
Gao, Feng (National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University)
Jiang, Zhengran (Maclay School)
Gillet, Daniel (Joliot, CEA, LabEx LERMIT, Universite Paris-Saclay)
Su, Weiheng (National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University)
Jiang, Chunlai (National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University)
Publication Information
Journal of Microbiology and Biotechnology / v.28, no.6, 2018 , pp. 849-859 More about this Journal
Abstract
Herpes simplex virus type 2 (HSV-2) infection has been a public health concern worldwide. It is the leading cause of genital herpes and a contributing factor to cervical cancer and human immunodeficiency virus (HIV) infection. No vaccine is available yet for the treatment of HSV-2 infection, and routinely used synthetic nucleoside analogs have led to the emergence of drug resistance. The small molecule $Retro-2^{cycl}$ has been reported to be active against several pathogens by acting on intracellular vesicle transport, which also participates in the HSV-2 lifecycle. Here, we showed that Retro-2.1, which is an optimized, more potent derivative of $Retro-2^{cycl}$, could inhibit HSV-2 infection, with 50% inhibitory concentrations of $5.58{\mu}M$ and $6.35{\mu}M$ in cytopathic effect inhibition and plaque reduction assays, respectively. The cytotoxicity of Retro-2.1 was relatively low, with a 50% cytotoxicity concentration of $116.5{\mu}M$. We also preliminarily identified that Retro-2.1 exerted the antiviral effect against HSV-2 by a dual mechanism of action on virus entry and late stages of infection. Therefore, our study for the first time demonstrated Retro-2.1 as an effective antiviral agent against HSV-2 in vitro with targets distinct from those of nucleoside analogs.
Keywords
Herpes simplex virus type 2; Retro-2.1; antiviral effect; entry; late stage; vesicle transport;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Canton J, Kima PE. 2012. Targeting host syntaxin-5 preferentially blocks Leishmania parasitophorous vacuole development in infected cells and limits experimental Leishmania infections. Am. J. Pathol. 181: 1348-1355.   DOI
2 Carney DW, Nelson CDS, Ferris BD, Stevens JP, Lipovsky A, Kazakov T, et al. 2014. Structural optimization of a retrograde trafficking inhibitor that protects cells from infections by human polyoma- and papillomaviruses. Bioorg. Med. Chem. 22: 4836-4847.   DOI
3 Nelson CDS, Carney DW, Derdowski A, Lipovsky A, Gee GV, O'Hara B, et al. 2013. A retrograde trafficking inhibitor of ricin and Shiga-like toxins inhibits infection of cells by human and monkey polyomaviruses. Mbio 4: e00729-13.
4 Herweg J-A, Pons V, Becher D, Hecker M, Krohne G, Barbier J, et al. 2016. Proteomic analysis of the Simkaniacontaining vacuole: the central role of retrograde transport. Mol. Microbiol. 99: 151-171.   DOI
5 Lehtinen M, Koskela P, Jellum E, Bloigu A, Anttila T, Hallmans G, et al. 2002. Herpes simplex virus and risk of cervical cancer: a longitudinal, nested case-control study in the Nordic countries. Am. J. Epidemiol. 156: 687-692.   DOI
6 Looker KJ, Gamett GP, Schmid GP. 2008. An estimate of the global prevalence and incidence of herpes simplex virus type 2 infection. Bull. World Health Organ. 86: 805-812.   DOI
7 Johnston C, Koelle DM, Wald A. 2011. HSV-2: in pursuit of a vaccine. J. Clin. Invest. 121: 4600-4609.   DOI
8 Cassady KA, Whitley RJ. 1997. New therapeutic approaches to the alphaherpesvirus infections. J. Antimicrob. Chemother. 39: 119-128.   DOI
9 Morfin F, Thouvenot D. 2003. Herpes simplex virus resistance to antiviral drugs. J. Clin. Virol. 26: 29-37.   DOI
10 De SK, Hart JCL, B reuer J. 2015. H erpes simplex virus and varicella zoster virus: recent advances in therapy. Curr. Opin. Infect. Dis. 28: 589-595.
11 Stechmann B, Bai S-K, Gobbo E, Lopez R, Merer G, Pinchard S, et al. 2010. Inhibition of retrograde transport protects mice from lethal ricin challenge. Cell 141: 231-242.   DOI
12 Cai H, Reinisch K, Ferro-Novick S. 2007. Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev. Cell 12: 671-682.   DOI
13 Agelidis AM, Shukla D. 2015. Cell entry mechanisms of HSV: what we have learned in recent years. Future Virol. 10: 1145-1154.   DOI
14 Hadigal S, Shukla D. 2013. Exploiting herpes simplex virus entry for novel therapeutics. Viruses 5: 1447-1465.   DOI
15 Dan K, Miyashita K, Seto Y, Fujita H, Yamase T. 2002. The memory effect of heteropolyoxotungstate (PM-19) pretreatment on infection by herpes simplex virus at the penetration stage. Pharm. Res. 46: 357-362.   DOI
16 Gupta R, Warren T, Wald A. 2007. Genital herpes. Lancet 370: 2127-2137.   DOI
17 Qiu M, Chen Y, Song S, Song H, Chu Y, Yuan Z, et al. 2012. Poly (4-styrenesulfonic acid-co-maleic acid) is an entry inhibitor against both HIV-1 and HSV infections - potential as a dual functional microbicide. Antiviral Res. 96: 138-147.   DOI
18 Schang LM. 2014. Biophysical approaches to entry inhibitor antivirals with a broad spectrum of action. Future Virol. 9: 283-299.   DOI
19 Whitley RJ, Kimberlin DW, Roizman B. 1998. Herpes simplex viruses. Clin. Infect. Diseases 26: 541-553; quiz 554-545.   DOI
20 Celum CL. 2004. The interaction between herpes simplex virus and human immunodeficiency virus. Herpes 11 (Suppl 1): 36A-45A.
21 Argenta DF, Silva IT, Bassani VL, Koester LS, Teixeira HF, Simoes CMO. 2015. Antiherpes evaluation of soybean isoflavonoids. Arch. Virol. 160: 2335-2342.   DOI
22 Wald A, Link K. 2002. Risk of human immunodeficiency virus infection in herpes simplex virus type 2-seropositive persons: a meta-analysis. J. Infect. Dis. 185: 45-52.   DOI
23 Tsuchiya Y, Shimizu M, Hiyama Y, Itoh K, Hashimoto Y, Nakayama M, et al. 1985. Antiviral activity of natural occurring flavonoids in vitro. Chem. Pharm. Bull. 33: 3881-3886.   DOI
24 Akhtar J, Shukla D. 2009. Viral entry mechanisms: cellular and viral mediators of herpes simplex virus entry. FEBS J. 276: 7228-7236.   DOI
25 Antoine TE, Mishra YK, Trigilio J, Tiwari V, Adelung R, Shukla D. 2012. Prophylactic, therapeutic and neutralizing effects of zinc oxide tetrapod structures against herpes simplex virus type-2 infection. Antiviral Res. 96: 363-375.   DOI
26 Harden EA, Falshaw R, Carnachan SM, Kern ER, Prichard MN. 2009. Virucidal activity of polysaccharide extracts from four algal species against herpes simplex virus. Antiviral Res. 83: 282-289.   DOI
27 Mues MB, Cheshenko N, Wilson DW, Gunther-Cummins L, Herold BC. 2015. Dynasore disrupts trafficking of herpes simplex virus proteins. J. Virol. 89: 6673-6684.   DOI
28 Boehmer PE, Lehman IR. 1997. Herpes simplex virus DNA replication. Annu. Rev. Biochem. 66: 347-384.   DOI
29 Koyama AH, Uchida T. 1988. Quantitative studies on the maturation process of herpes simplex virus type 1 in Vero cells. Virus Res. 10: 281-285.   DOI
30 Gong YH, Matthews B, Cheung D, Tam T, Gadawski I, Leung D, et al. 2002. Evidence of dual sites of action of dendrimers: SPL-2999 inhibits both virus entry and late stages of herpes simplex virus replication. Antiviral Res. 55: 319-329.   DOI
31 Noel R, Gupta N, Pons V, Goudet A, Garcia-Castillo MD, Michau A, et al. 2013. N-Methyldihydroquinazolinone derivatives of Retro-2 with enhanced efficacy against Shiga toxin. J. Med. Chem. 56: 3404-3413.   DOI
32 Kalu NN, Desai PJ, Shirley CM, Gibson W, Dennis PA, Ambinder RF. 2014. Nelfinavir inhibits maturation and export of herpes simplex virus 1. J. Virol. 88: 5455-5461.   DOI
33 Yao F, Eriksson E. 2002. Inhibition of herpes simplex virus type 2 (HSV-2) viral replication by the dominant negative mutant polypeptide of HSV-1 origin binding protein. Antiviral Res. 53: 127-133.   DOI
34 Brugha R, Keersmaekers K, Renton A, Meheus A. 1997. Genital herpes infection: a review. Int. J. Epidemiol. 26: 698-709.   DOI
35 Yu S, Park JG, Kahn JN, Tumer NE, Pang Y-P. 2013. Common pharmacophore of structurally distinct smallmolecule inhibitors of intracellular retrograde trafficking of ribosome inactivating proteins. Sci. Rep. 3: 3397.   DOI
36 Gupta N, Pons V, Noel R, Buisson D-A, Michau A, Johannes L, et al. 2014. (S)-N-Methyldihydroquinazolinones are the active enantiomers of Retro-2 derived compounds against toxins. ACS Med. Chem. Lett. 5: 94-97.   DOI
37 Craig E, Huyghues-Despointes C-E, Yu C, Handy EL, Sello JK, Kima PE. 2017. Structurally optimized analogs of the retrograde trafficking inhibitor Retro-2cycl limit Leishmania infections. PLoS Negl. Trop. Dis. 11: e0005556.   DOI
38 Brown JC, Newcomb WW. 2011. Herpesvirus capsid assembly: insights from structural analysis. Curr. Opin. Virol. 1: 142-149.   DOI
39 Secher T, Shima A, Hinsinger K, Cintrat JC, Johannes L, Barbier J, et al. 2015. Retrograde trafficking inhibitor of Shiga toxins reduces morbidity and mortality of mice infected with enterohemorrhagic Escherichia coli. Antimicrob. Agents Chemother. 59: 5010-5013.   DOI
40 Dai W, Wu Y, Bi J, Lu X, Hou A, Zhou Y, et al. 2017. Antiviral effects of Retro-2cycl and Retro-2.1 against Enterovirus 71 in vitro and in vivo. Antiviral Res. 144: 311-321.   DOI
41 Mingo R M, H an J, Newcomb W W, Brown JC. 2012. Replication of herpes simplex virus: egress of progeny virus at specialized cell membrane sites. J. Virol. 86: 7084-7097.   DOI
42 Pauwels R, Balzarini J, Baba M, Snoeck R, Schols D, Herdewijn P, et al. 1988. Rapid and automated tetrazoliumbased colorimetric assay for the detection of anti-HIV compounds. J. Virol. Methods 20: 309-321.   DOI
43 Granzow H, Klupp BG, Fuchs W, Veits J, Osterrieder N, Mettenleiter TC. 2001. Egress of alphaherpesviruses: comparative ultrastructural study. J. Virol. 75: 3675-3684.   DOI
44 Owen DJ, Crump CM, Graham SC. 2015. Tegument assembly and secondary envelopment of alphaherpesviruses. Viruses 7: 5084-5114.   DOI
45 Bourinbaiar AS, Lee-Huang S. 1996. The activity of plantderived antiretroviral proteins MAP30 and GAP31 against herpes simplex virus in vitro. Biochem. Biophys. Res. Commun. 219: 923-929.   DOI
46 Lund J, Sato A, Akira S, Medzhitov R, Iwasaki A. 2003. Toll-like receptor 9-mediated recognition of herpes simplex virus-2 by plasmacytoid dendritic cells. J. Exp. Med. 198: 513-520.   DOI
47 Crouch SP, Kozlowski R, Slater KJ, Fletcher J. 1993. The use of ATP bioluminescence as a measure of cell proliferation and cytotoxicity. J. Immunol. Methods 160: 81-88.   DOI
48 Maginnis MS, Nelson CDS, Atwood WJ. 2015. JC polyomavirus attachment, entry, and trafficking: unlocking the keys to a fatal infection. J. Neurovirol. 21: 601-613.   DOI
49 Harrison K, Haga IR, Pechenick Jowers T, Jasim S, Cintrat J-C, Gillet D, et al. 2016. Vaccinia virus uses retromer-independent cellular retrograde transport pathways to facilitate the wrapping of intracellular mature virions during viral morphogenesis. J. Virol. 90: 10120-10132.   DOI
50 Sivan G, Weisberg AS, Americo JL, Moss B. 2016. Retrograde transport from early endosomes to the trans-golgi network enables membrane wrapping and egress of vaccinia virus virions. J. Virol. 90: 8891-8905.   DOI
51 Gupta N, Noel R, Goudet A, Hinsinger K, Michau A, Pons V, et al. 2017. Inhibitors of retrograde trafficking active against ricin and Shiga toxins also protect cells from several viruses, Leishmania and Chlamydiales. Chem. Biol. Int. 267: 96-103.   DOI
52 Nonnenmacher ME, Cintrat J-C, Gillet D, Weber T. 2015. Syntaxin 5-dependent retrograde transport to the trans-golgi network is required for adeno-associated virus transduction. J. Virol. 89: 1673-1687.   DOI