Browse > Article

sanN Encoding a Dehydrogenase is Essential for Nikkomycin Biosynthesis in Streptomyces ansochromogenes  

Ling, Hong-Bo (State Key Laboratory of Microbial Resources, Institute of Microbiology, Chineses Academy of Sciences)
Wang, Guo-Jun (State Key Laboratory of Microbial Resources, Institute of Microbiology, Chineses Academy of Sciences)
Li, Jin-E (State Key Laboratory of Microbial Resources, Institute of Microbiology, Chineses Academy of Sciences)
Tan, Hua-Rong (State Key Laboratory of Microbial Resources, Institute of Microbiology, Chineses Academy of Sciences)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.3, 2008 , pp. 397-403 More about this Journal
Abstract
Nikkomycins are a group of peptidyl nucleoside antibiotics with potent fungicidal, insecticidal, and acaricidal activities. sanN was cloned from the partial genomic library of Streptomyces ansochromogenes 7100. Gene disruption and complementation analysis demonstrated that sanN is essential for nikkomycin biosynthesis in S. ansochromogenes. Primer extension assay indicated that sanN is transcribed from two promoters (sanN-P1 and sanN-P2), and sanN-P2 plays a more important role in nikkomycin biosynthesis. Purified recombinant SanN acts as a dehydrogenase to convert benzoate-CoA to benzaldehyde in a random-order mechanism in vitro, with respective $K_{cat}/K_m$$ values of $3.8mM^{-1}s^{-1}\;and\;12.0mM^{-1}s^{-1}$ toward benzoate-CoA and NADH, suggesting that SanN catalyzes the formation of picolinaldehyde during biosynthesis of nikkomycin X and Z components in the wild-type stain. These data would facilitate us to understand the biosynthetic pathway of nikkomycins and to consider the combinatorial synthesis of novel antibiotic derivatives.
Keywords
sanN; dehydrogenase; nikkomycin biosynthesis; Streptomyces ansochromogenes;
Citations & Related Records

Times Cited By Web Of Science : 4  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Arai, H., S. Akahira, T. Ohishi, M. Maeda, and T. Kudo. 1998. Adaptation of Comamonas testosteroni TA441 to utilize phenol: Organization and regulation of the genes involved in phenol degradation. Microbiology 144: 2895-2903   DOI   ScienceOn
2 Bierman, M., R. Logan, K. O'Brien, E. T. Seno, R. N. Rao, and B. E Schoner. 1992. Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116: 43-49   DOI   ScienceOn
3 Kieser, T., M. J. Bibb, M. J. Buttner, K. F. Chater, and D. A. Hopwood. 2000. Practical Streptomyces Genetics. The John Innes Foundation, Norwich, U.K
4 Li, W. and H. Tan. 2003. Structure and function of sanV: A gene involved in nikkomycin biosynthesis of Streptomyces ansochromogenes. Curr. Microbiol. 46: 403-407   DOI   ScienceOn
5 MacNeil, D. J., K. M. Gewain, C. L. Ruby, G. Dezeny, P. H. Gibbons, and T. MacNeil. 1992. Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111: 61-68   DOI   ScienceOn
6 Niu, G., G. Liu, Y. Tian, and H. Tan. 2006. SanJ, an ATPdependent picolinate-CoA ligase, catalyzes the conversion of picolinate to picolinate-CoA during nikkomycin biosynthesis in Streptomyces ansochromogenes. Metab. Eng. 8: 183-195   DOI   ScienceOn
7 Venci, D., G. Zhao, and M. S. Jorns. 2002. Molecular characterization of NikD, a new flavoenzyme important in the biosynthesis of nikkomycin antibiotics. Biochemistry 41:15795-15802   DOI   ScienceOn
8 Shingler, V., J. Powlowski, and U. Marklund. 1992. Nucleotide sequence and functional analysis of the complete phenol/3,4-dimethylphenol catabolic pathway of Pseudomonas sp. strain CF600. J. Bacteriol. 174: 711-724   DOI
9 Bruntner, C., B. Lauer, W. Schwarz, V. Mohrle, and C. Bormann. 1999. Molecular characterization of co-transcribed genes from Streptomyces tendae Tu901 involved in the biosynthesis of the peptidyl moiety of the peptidyl nucleoside antibiotic nikkomycin. Mol. Gen. Genet. 262: 102-114
10 Arai, H., T. Ohishi, M. Y. Chang, and T. Kudo. 2000. Arrangement and regulation of the genes for meta-pathway enzymes required for degradation of phenol in Comamonas testosteroni TA441. Microbiology 146: 1707-1715   DOI
11 Sambrook, J., E. F. Fritsch, and T. Maniatis. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor, Laboratory Press, Cold Spring Harbor, N.Y.
12 Strohl, W. R. 1992. Compilation and analysis of DNA sequences associated with apparent streptomycete promoters. Nucleic Acids Res. 20: 961-974   DOI   ScienceOn
13 Chen, W., H. Zeng, and H. Tan. 2000. Cloning, sequencing, and function of sanF: A gene involved in nikkomycin biosynthesis of Streptomyces ansochromogenes. Curr. Microbiol. 41: 312-316   DOI   ScienceOn
14 Brillinger, G. U. 1979. Metabolic products of microorganisms. 181. Chitin synthase from fungi, a test model for substances with insecticidal properties. Arch. Microbiol. 121: 71-74   DOI   ScienceOn
15 Paget, M. S., L. Chamberlin, A. Atrih, S. J. Foster, and M. J. Buttner. 1999. Evidence that the extracytoplasmic function sigma factor sigmaE is required for normal cell wall structure in Streptomyces coelicolor A3(2). J. Bacteriol. 181: 204-211
16 Fiedler, H. P., T. Schuz, and H. Decker. 1993. An overview of nikkomycins: History, biochemistry, and applications, pp. 325-352. In J. W. Rippon and R. A. Fromtling (eds.), Cutaneous Antifungal Agents. Marcel Dekker Inc., N.Y.
17 Aemprapa, S. and P. A. Williams. 1998. Implications of the xylQ gene of TOL plasmid pWW102 for the evolution of aromatic catabolic pathways. Microbiology 144: 1387-1396   DOI   ScienceOn
18 Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402   DOI   ScienceOn
19 Bormann, C., A. Kalmanczhelyi, R. Sussmuth, and G. Jung. 1999. Production of nikkomycins Bx and Bz by mutasynthesis with genetically engineered Streptomyces tendae Tu901. J. Antibiot. (Tokyo) 52: 102-108   DOI   ScienceOn
20 Miyazawa, D., G. Mukerjee-Dhar, M. Shimura, T. Hatta, and K. Kimbara. 2004. Genes for Mn(II)-dependent NahC and Fe(II)-dependent NahH located in close proximity in the thermophilic naphthalene and PCB degrader, Bacillus sp. JF8: Cloning and characterization. Microbiology 150: 993-1004   DOI   ScienceOn
21 Bruntner, C. and C. Bormann. 1998. The Streptomyces tendae Tu901 L-lysine 2-aminotransferase catalyzes the initial reaction in nikkomycin D biosynthesis. Eur. J. Biochem. 254: 347-355   DOI   ScienceOn
22 Bormann, C., S. Mattern, H. Schrempf, H. P. Fiedler, and H. Zahner. 1989. Isolation of Streptomyces tendae mutants with an altered nikkomycin spectrum. J. Antibiot. (Tokyo) 42: 913-918   DOI
23 Engel, P. and A. H. Ullah. 1988. Mutation affecting peptide bond formation in nikkomycin biosynthesis. Biochem. Biophys. Res. Commun. 156: 695-700   DOI   ScienceOn
24 Fiedler, H. P., R. Kurth, J. Langharig, J. Delzer, and H. Zahner. 1982. Nikkomycins: Microbial inhibitors of chitin synthetase. J. Chem. Technol. Biotechnol. 32: 271-280   DOI
25 Ling, H., G. Wang, Y. Tian, G. Liu, and H. Tan. 2007. SanM catalyzes the formation of 4-pyridyl-2-oxo-4-hydroxyisovalerate in nikkomycin biosynthesis by interacting with SanN. Biochem. Biophys. Res. Commun. 361: 196-201   DOI   ScienceOn
26 Liu, G., Y. Tian, H. Yang, and H. Tan. 2005. A pathway-specific transcriptional regulatory gene for nikkomycin biosynthesis in Streptomyces ansochromogenes that also influences colony development. Mol. Microbiol. 55: 1855-1866   DOI   ScienceOn