• Title/Summary/Keyword: Nucleation and crystal growth rates

Search Result 9, Processing Time 0.021 seconds

Preparation and Characterization of Glass-ceramics in MgO-${Al_2}{O_3}$-$SiO_2$ Glass (MgO-${Al_2}{O_3}$-$SiO_2$계 결정화유리의 제조 및 물성평가)

  • 손성범;최세영
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.6
    • /
    • pp.604-611
    • /
    • 2000
  • Glass-ceramics containing a cordierite (2MgO-2Al2O3-5SiO2) as a main crystal phase was prepared from MgO-Al2O3-SiO2 system glass through a controlled 2-step heat treatment for the application to magnetic memory disk substrate for higher storage capacity. Parent glasses prepared with addition of CeO2 as a fulx and TiO2 as a nucleating agent were crystallized by a 2-step heat treatment i.e. nucleation and crystal grwoth. Then the maximum nucleation and crystal growth rates were investigated and several properties such as bending strength, surface hardness and surface roughness were also studied for heat treated glass. As a result, only a $\alpha$-cordierite was precipitated as a main crystal phase for all heat treatment conditions and the maximum nucleation and crystal growth rates were 2.4$\times$109/㎣.hr at 80$0^{\circ}C$ and 0.3${\mu}{\textrm}{m}$/hr at 915$^{\circ}C$ respectively. After being nucleated at 80$0^{\circ}C$ for 5 hours and then crystallized at 915$^{\circ}C$ for 1 hour, the heat treated glass had a crystal volume fraction of 17.6% and crystal size fo 0.3${\mu}{\textrm}{m}$, and showed the optimum properties for the application to magnetic memory disk substrates as follows. ; Bending strength of 192 MPa, Vidkers hardness of 642.1kgf/$\textrm{mm}^2$, and surface roughness of 27$\AA$.

  • PDF

Diopside DSD (crystal size distribution) in the Contact Metamorphic Aureole (Hwanggangni Formation) near the Daeyasan Granite Goesan, Korea (괴산지역 대야산 화강암체 주변 접촉변성대(황강리층)에서의 투휘석 결정 크기분포)

  • Kim, Sangmyung;Kim, Hyung-Shik
    • The Journal of the Petrological Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.161-167
    • /
    • 1996
  • The CSD (crystal size distribution) of diopside crystals in the calc-silicate hornfels of the Hwanggangni Formation intruded by the Cretaceous Daeyasan granite shows the patterns of continuous nucleation and growth. There is correlation between the distance from the intrusion contact and the slopes from the linear part of log(population density) vs. size diagrams. In the log(population density) vs. size diagrams of the samples systematically collected from the intrusion contact, two different groups are recognized; the slopes for the samples near the intrusion contact (horizontal distance from the contact less than 50m) are gentler (1500$cm^{-1}$) than those for the samples away from the intrusion contact (2500$cm^{-1}$, distance from the contact greater than 100 m). These differences may reflect the differences in growth rates and crystallization time, or the differences in diopside-forming reactions. All of the log(population density) vs. size diagrams show depletion of smaller crystals. The observed depletion may be due to Ostwald ripening or the changes in nucleation rates as the reactant phases diminishes. Similar grouping is also possible for the observed degree of depletion of smaller crystals; the depletion decreases with increasing distance from the intrusion contact, suggesting temperature-dependent rates of Ostwald ripening.

  • PDF

The Cystallization Behavior of $Li_2O-SiO_2$ Glasses ($Li_2O-SiO_2$ 계 유리의 결정화에 관한 연구)

  • 김득중;김종희
    • Journal of the Korean Ceramic Society
    • /
    • v.18 no.3
    • /
    • pp.163-170
    • /
    • 1981
  • The crystallization of $Li_2O-SiO_2$ system glasses and the effect of phase separtion to crystal nucleation were studied. The crystallization temperatures of various glasses were determined by DTA and glasses were nucleation heat treated at the temperatures ranging from 45$0^{\circ}C$ to 5$25^{\circ}C$. These glasses were thengown at $700^{\circ}C$ to observable size in the optical microscope. Crystal nucleation rates of various glasses were obtained by estimating the number of crystals per unit volume. The main crystal phase of these glasses identified by X-ray diffraction was lithium disilicate ($Li_2O$.$2SiO_2$). It was found that the crystal nucleation rate of glass (19.5% $Li_2P$-80.5% $SiO_2$), the nearest composition to lithium disilicate, was higher than other glasses. The opalescence caused by phase separation was observed in the nucleation heat treated glass (16.3% $Li_2O$-83.7% $SiO_2$). The result from nucleation density measurement of this glass indicated that the nucleation was enhanced during early stage of phase separation. The molphologies of crystals in glasses and crystal growth rate at $600^{\circ}C$ were also discussed.

  • PDF

effect of Heating Rate on the Mechanical Properties in the Crystallization of $Li_2O$.$2SiO_2$ Glass ($Li_2O$.$2SiO_2$유리의 결정화에서 승온속도가 기계적 특성에 미치는 영향)

  • 최병현;고경현;안재환;지응업
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.7
    • /
    • pp.809-815
    • /
    • 1996
  • When Li2O.2SiO2 glass was crystallized between the temperature of maximum nucleation and the temperature of maximum crystal growth it was found that the control of heating rate had serious effect on the crystallinity and microstructure and the greatly changed physical properties. Density and elastic modulus tends to increase but thermal expansion coefficient decreased with increased crystallinity. When heating rate between the tempe-rature of maximum nucleation and the temperature of maximum crystal growth was 10~5$0^{\circ}C$/hr. crystallinity was increased to result in the increment of strength. When nuclation was done at 44$0^{\circ}C$ for 5 hours and the temperature of crystal growth was held at 575$^{\circ}C$ strength was increased until crystallinity reached 65% and strength was decreased with higher crystallinity. These phenomena could be explained that even for the same crystallinity different heat rates resulted in different number and size of cracks.

  • PDF

The Effect of Crystallization of SLS Glass for Bulletproof Materials (방탄소재 활용을 위한 SLS 유리 결정화의 효과)

  • Shim, Gyu-In;Kim, Tae-Yoon;Choi, Se-Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.120-125
    • /
    • 2010
  • For application of transparent bulletproof materials, the SLS(soda-lime-silicate) glass was heated by 2-step crystallization. The DTA curve for SLS glass revealed the nucleation and crystal growth temperature at about $575^{\circ}C$ and $675^{\circ}C$, respectively. The crystallized glass was heated at various conditions(temperature, time). As a result, the maximum nucleation and crystal growth rates were $3.8\times10^5/mm^3{\cdot}hr$ at $575^{\circ}C$ and 20.58nm/min at $680^{\circ}C$, respectively. The bending strength, fracture toughness and vickers hardness were 451.7MPa, $0.9388MPa{\cdot}m^{1/2}$, and $693.9H_v$ which were 201%, 31%, and 22% higher than parent glass, respectively. Surface image and transmittance of crystallized SLS glass were analyzed by optical microscopy and UV/VIS/NIR spectrophotometer. Transmittance of crystallized SLS glass at visible-range(200~800nm) was not changed.

Controlled Crystallization and its Effects on Some Properties of Ge-Se-Te Chalcogenide Glass (Ge-Se-Te계 Chalcogenide 유리의 결정화 및 결정화가 물성에 미치는 영향)

  • 송순모;최세영;이용근
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.8
    • /
    • pp.855-862
    • /
    • 1996
  • The nucleation and the crystal growth rates of Ge-Se-Te chalcogenide glass by two step heat-treatment and its effect on the mechanical optical properties and water-resistance were determined. The maximum nuclea-tion and crystal growth rate were 2.1$\times$103/mm3 .min at 28$0^{\circ}C$ and 0.4${\mu}{\textrm}{m}$/min at 33$0^{\circ}C$ respectively. When the crystal volume fraction with crystal size $1.5mutextrm{m}$ was about 4% the (hardness and fracture toughness were about 117kg/mm2 and 6.0 MPa.mm1/2)respectively. The weight loss of crystallized glass in water was lower than parent glass($25^{\circ}C$ for 32 hrs : 0.03% 8$0^{\circ}C$ for 16 hrs : 0.1%) as 0.01% at $25^{\circ}C$, 0.03% at 8$0^{\circ}C$ for 16 hrs : 0.1%) at $25^{\circ}C$ 0.03% at 8$0^{\circ}C$ respectively. The IR-transmittance decreased with increasing crystal size and crystal volume fraction. The IR-transmittance of crystallized glass with the crystal size of $1.5mutextrm{m}$ (crystal volume fraction : 4%) presented 56% which was about 4% lower than that of parent glass.

  • PDF

Enhanced size uniformity and dispersibility of BaTiO3 nanoparticles by hydrothermal synthesis (균일성과 분산성이 향산된 BaTiO3 나노입자의 수열합성)

  • Cho, Hoyeon;Park, Byoungnam
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.3
    • /
    • pp.91-95
    • /
    • 2020
  • In this study, we report a hydrothermal synthesis in which BaTiO3 nanoparticles (NPs) with enhanced size uniformity and dispersibility are synthesized by increased time and temperature, increasing nucleation and diffusion rates. The formation process of an uniform size of 20 nm BaTiO3 NPs, which has not been extensively researched, was optimized through hydrothermal synthesis at 180℃. Simultaneous increase in the nucleation rate of TiO2 and diffusion length of Ba2+ ions, resulting from a higher temperature, allowed for the synthesis of BaTiO3 NPs (20 nm) with significantly enhanced size-uniformity. The size and crystallinity of BaTiO3 NPs which exhibit excellent dispersibility in hexane solvent were investigated using transmission electron microscopy and X-ray diffraction. The results presented herein provide insights into improving the size uniformity and dispersibility of BaTiO3 NPs by hydrothermal synthesis for applications to variety of electronic devices.

In Situ Observation of Solidification Behavior in Undercooled $Pd_{40}Cu_{30}Ni_{10}P_{20}$ Alloy Melts during Linear Cooling (연속냉각 중 과냉 된 $Pd_{40}Cu_{30}Ni_{10}P_{20}$ 합금 용탕의 실시간 응고거동 관찰)

  • Kim, Ji-Hun
    • Journal of Korea Foundry Society
    • /
    • v.23 no.5
    • /
    • pp.276-285
    • /
    • 2003
  • In the undercooled melt of $Pd_{40}Cu_{30}Ni_{10}P_{20}$ alloy, the solidification behavior including nucleation and growth of crystals at the micrometer level has been observed in-situ by use of a confocal scanning laser microscope combined with an infrared image furnace. The $Pd_{40}Cu_{30}Ni_{10}P_{20}$ alloy specimens were cooled from the liquid state to glass transition temperature. 575 K, at various cooling late under a helium gas flow. According to the cooling rate, the morphologies of the solidification front are changed among various types, irregular jog like front, columnar dendritic front, cellular grain, star like shape jog and fine grain, etc. The velocities of the solid-liquid interface are measured to be $10^{-5}{\sim}10^{-8}$ m/s which are at least two orders higher than the theoretical crystal growth rates. Combining the morphologies observed in terms of cooling rates and their solidification behaviors, we conclude that phase separation takes place in the undercooled molten $Pd_{40}Cu_{30}Ni_{10}P_{20}$ alloy. The continuous cooling transformation (CCT) diagram was constructed from solidification onset time at various linear cooling conditions with different rate. The CCT diagram suggests that the critical cooling rate for glassy solidification is about 1.5 K/s, which is in agreement with the previous calorimetric findings.

Crystallization Kinetics by Thermal Analysis (DTA) on Starting Glass Compositions for PDP(Plasma Display Panel) Rib (열분석에 의한 PDP 격벽용 출발유리조성의 결정화 특성 연구)

  • Jeon, Young-Wook;Cha, Jae-Min;Kim, Dae-Whan;Lee, Byung-Chul;Ryu, Bong-Ki
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.8
    • /
    • pp.721-727
    • /
    • 2002
  • In order to overcome trade-off among compositions, process and properties of the glasses with high PbO-base composition for PDP Rib, we studied glass crystallization and crystallization kinetics by Differential Thermal Analysis(DTA). Glass powder was obtained through melting/cooling/grinding, with 3 wt%TiO2 addition for the crystal nucleation and growth in $62PbO-19B_2O_3-10SiO_2-9(Al_2O_3-K_2O-BaO-ZnO)$(in wt%) composition glass. This powder was heat-treated for 1 to 10 h at $445^{\circ}C$ for nucleation. DTA measurements were performed to obtain the crystallization peak with $5∼25^{\circ}C/min$ heating rates. DTA crystallization peak temperature increased with increasing the heating rate and decreased with increasing the heating time. Because the Avrami parameter (n) was approximately 1, the surface crystallization occurred. The maximum nucleation time was 2 h.