• Title/Summary/Keyword: Nucleation Mode

Search Result 36, Processing Time 0.027 seconds

Experimental Investigation of Nano-sized Particulate Matter Emission Characteristics under Engine Operating Conditions from Common Rail Diesel Engine (커먼레일 디젤엔진의 운전조건이 나노크기 입자상 물질 배출특성에 미치는 영향에 관한 실험적 연구)

  • Lee, Hyung-Min;Myung, Cha-Lee;Park, Sim-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.508-514
    • /
    • 2010
  • The objective of this work presented here was experimental study of steadystate and cold start exhaust nano-sized particle characteristics from common rail diesel engine. The effect of the diesel oxidation catalyst (DOC) on the particle number reduction was insignificant, however, particle number concentration levels were reduced by 3 orders of magnitude into the downstream of diesel particulate filter (DPF). In high speed and load conditions, natural regeneration of trapped particle occurred inside DPF and it was referable to increase particle number concentration. As fuel injection timing was shifted BTDC $6^{\circ}CA$ to ATDC $4^{\circ}CA$, particle number concentration level was slightly reduced, however particle number and size was increased at ATDC $9^{\circ}CA$. Nucleation type particle reduced and accumulation type particle was increased on EGR condition.

Growth Mechanism and Crystal Ordering of Spherulitic Patterns in a Belousov-Zhabotinsky Type Reaction System

  • Yadav, Narendra;Majhi, S.S.;Srivastava, P.K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3397-3406
    • /
    • 2012
  • Three types of spherulitic morphologies have been investigated in dual substrate mode of Belousov-Zhabotinsky (BZ) type reaction system. Prior to growth of spherulites, three distinct patterning behaviors have been observed sequentially during the reaction process. Initial and the early-phase of reaction showed the emergence of concentric ring-like wave patterns. A colloidal-state of reaction consists of numerous fine solid particles, which forms primarily some nucleation centers of dendritic characters. The nucleation centers were found to grow in sizes and shapes with the progress of reaction. It leads to growth of dendritic-like spherulitic crystal patterns. The resultant spherulites showed transitions in their morphologies, including sea-weeds and rhythmic spherulitic crystal patterns, by the effects substituted organic substrate and in the higher concentration of bromate-initiator respectively. The branching mechanism and crystal ordering of spherulitic textures were studied with help of optical microscope (OPM) and scanning electron microscope (SEM). Characteristics of crystal phases were also evaluated using X-ray diffraction (XRD) and differential thermal analysis (DTA). Results indicated that the compositions of reactants and crystal orderings were interrelated with morphological transitions of spherulites as illustrated and described.

Rationally designed siRNAs without miRNA-like off-target repression

  • Seok, Heeyoung;Jang, Eun-Sook;Chi, Sung Wook
    • BMB Reports
    • /
    • v.49 no.3
    • /
    • pp.135-136
    • /
    • 2016
  • Small interfering RNAs (siRNAs) have been developed to intentionally repress a specific gene expression by directing RNA-induced silencing complex (RISC), mimicking the endogenous gene silencer, microRNAs (miRNAs). Although siRNA is designed to be perfectly complementary to an intended target mRNA, it also suppresses hundreds of off-targets by the way that miRNAs recognize targets. Until now, there is no efficient way to avoid such off-target repression, although the mode of miRNA-like interaction has been proposed. Rationally based on the model called "transitional nucleation" which pre-requires base-pairs from position 2 to the pivot (position 6) with targets, we developed a simple chemical modification which completely eliminates miRNA-like off-target repression (0%), achieved by substituting a nucleotide in pivot with abasic spacers (dSpacer or C3 spacer), which potentially destabilize the transitional nucleation. Furthermore, by alleviating steric hindrance in the complex with Argonaute (Ago), abasic pivot substitution also preserves near-perfect on-target activity (∼80-100%). Abasic pivot substitution offers a general means of harnessing target specificity of siRNAs to experimental and clinical applications where misleading and deleterious phenotypes from off-target repression must be considered.

Effects of Plasma Pretreatment of the Cu Seed Layer on Cu Electroplating (Cu seed layer 표면의 플라즈마 전처리가 Cu 전기도금 공정에 미치는 효과에 관한 연구)

  • O, Jun-Hwan;Lee, Seong-Uk;Lee, Jong-Mu
    • Korean Journal of Materials Research
    • /
    • v.11 no.9
    • /
    • pp.802-809
    • /
    • 2001
  • Electroplating is an attractive alternative deposition method for copper with the need for a conformal and conductive seed layer In addition, the Cu seed layer should be highly pure so as not to compromise the effective resistivity of the filled copper interconnect structure. This seed layer requires low electrical resistivity, low levels of impurities, smooth interface, good adhesion to the barrier metal and low thickness concurrent with coherence for ensuring void-free fill. The electrical conductivity of the surface plays an important role in formation of initial Cu nuclei, Cu nucleation is much easier on the substrate with higher electrical conductivities. It is also known that the nucleation processes of Cu are very sensitive to surface condition. In this study, copper seed layers deposited by magnetron sputtering onto a tantalum nitride barrier layer were used for electroplating copper in the forward pulsed mode. Prior to electroplating a copper film, the Cu seed layer was cleaned by plasma H$_2$ and $N_2$. In the plasma treatment exposure tome was varied from 1 to 20 min and plasma power from 20 to 140W. Effects of plasma pretreatment to Cu seed/Tantalum nitride (TaN)/borophosphosilicate glass (BPSG) samples on electroplating of copper (Cu) films were investigated.

  • PDF

Effect of Nucleation and Growth Dynamics on Saturation Magnetization of Chemically Synthesized Fe Nanoparticles

  • Ogawa, T.;Seto, K.;Hasegawa, D.;Yang, H.T.;Kura, H.;Doi, M.;Takahashi, M.
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.308-311
    • /
    • 2011
  • In order to obtain mono-dispersed Fe NPs with high saturation magnetization, quantitative analysis method to investigate the growth dynamics of the Fe NPs synthesized by a conventional thermal decomposition method has been developed. As a result, fast nucleation process promotes formation of ~4 nm of initial nucleus with a non-equilibrium phase, resulting in low saturation magnetization. And slow particle growth with atomic-scaled surface precipitation mode (< 100 atoms/($min{\cdot}nm^2$)) can form the growth layer on the surface of initial nucleus with high saturation magnetization (~190 emu/$g_{Fe}$) as an equilibrium a phase of Fe. Therefore, higher stabilization of small initial nucleus generated just after the injection of $Fe(CO)_5$ should be one of the key issues to achieve much higher $M_s$ of Fe NPs.

Characteristics of New Particle Formation and Growth Events Observed at Gosan Climate Observatory in Fall 2009 (제주 고산에서 2009년 가을에 관측된 입자 생성 및 성장 현상의 특성)

  • Kim, Yumi;Kim, Sang-Woo;Yoon, Soon-Chang;Jang, Im-Suk;Lee, Suk-Jo;Lee, Meehye;Kim, Ji-Hyoung
    • Atmosphere
    • /
    • v.21 no.1
    • /
    • pp.35-44
    • /
    • 2011
  • We investigated characteristics of new particle formation and growth events observed at Gosan climate observatory using Scanning Mobility Particle Sizer (SMPS) measurements of particle number size distribution with 54 size ranges from 10 to 487 nm in October 2009. Four days (17~20 October) and five days (22~26 October) were classified into strong new particle formation and growth event ($N_S$) and weak particle formation and growth event ($N_W$), respectively. $N_S$ and $N_W$ divided by increase of aerosol number concentration in nucleation mode and continuity of growth from nucleation to Aitken mode. Particle growth rates of $N_S$ (5.34~$9.19nm\;h^{-1}$) were greater than that of $N_W$ (2.15~$3.53nm\;h^{-1}$). $N_S$ and $N_W$ were analyzed with synoptic pattern over East Asia, meteorological elements, and sulfur dioxide ($SO_2$) measured at Gosan. We found that $N_S$ was characterized by a fast and northwesterly wind accompanied cold and dry airmass, but $N_W$ was affected airmass originated from South China and come through the Korea Peninsula. The events ($N_S$ and $N_W$) occurred at conditions of high solar flux ($&gt;700W\;m^{-2}$) and low relative humidity (< 60%). The $SO_2$ concentration on $N_S$ and $N_W$ was higher than that on case of non observed new particle formation.

Carbon Nanotube Growth for Field Emission Display Application

  • Choi, G.S.;Park, J.B.;Hong, S.Y.;Cho, Y.S.;Son, K.H.;Kim, D-J;Song, Y.H.;Lee, J.H.;Cho, K.I.;Kim, D.J.
    • Journal of Information Display
    • /
    • v.2 no.3
    • /
    • pp.54-59
    • /
    • 2001
  • The role of $NH_3$ for vertical alignment of CNTs was investigated. The direct cause of the alignment was a dense distribution of catalytic metal particles, but which was kept catalytically active during the growth process by $NH_3$. This allows a dense nucleation of the CNTs, and consequently, assists vertical alignment through entanglement and mechanical leaning among the tubes. The CNTs grow in a base growth mode. Several evidences were presented including a direct cross-sectional TEM observation. Since Ni is consumed both by silicide reaction and by capture in the growing tube, the growth stops when Ni is completely depleted. This occurs faster for smaller particles, and thus a longer growth results in thin bottom with poor adhesion.

  • PDF

Phase change properties of BN doped GeSbTe films

  • Jang, Mun-Hyeong;Park, Seong-Jin;Park, Seung-Jong;Jeong, Gwang-Sik;Jo, Man-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.226-226
    • /
    • 2010
  • Boron Nitride (BN) doped GeSbTe films were grown by the ion beam sputtering deposition (IBSD). The in-situ sheet resistance data and the x-ray diffraction patterns showed the crystallization is suppressed due to the BN incorporation. The phase change speed in BN doped GeSbTe films were investigated using the static tester equipped with nanosecond pulsed laser. The phase change speed for BN doped GST films become faster than the corresponding values for an undoped GST film. The Johnson-Mehl-Avrami(JMA) plot and Avrami coefficient for laser crystallization showed that the change in growth mode during the laser crystallization is a most important factor for the phase change speed in the BN doped GST films. The JMA results and the atomic force microscopy (AFM) images indicate that the origin of the change in the crystalline growth mode is due to an increase in the number of initial nucleation sites which is produced by the incorporated BN. In addition, the retension properties for the laser writing/erasing are remarkably improved in BN doped GeSbTe films owing to the stability of the incorporated BN.

  • PDF

As BEP Effects on the Properties of InAs Thin Films Grown on Tilted GaAs(100) Substrate (기울어진 GaAs(100) 기판 위에 성장된 InAs 박막 특성에 대한 As BEP 효과)

  • Kim, Min-Su;Leem, Jae-Young
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.4
    • /
    • pp.176-179
    • /
    • 2010
  • The InAs thin films were grown on GaAs(100) substrate with $2^{\circ}C$ tilted toward [$0\bar{1}\bar{1}$] with different As beam equivalent pressure (BEP) by using molecular beam epitaxy. Growth temperature and thickness of the InAs thin films were $480^{\circ}C$ and 0.5 ${\mu}m$, respectively. We studied the relation between the As BEP and the properties of InAs thin films. The properties of InAs thin films were observed by reflection high-energy electron diffraction (RHEED), optical microscope, and Hall effect. The growth, monitored by RHEED, was produced through an initial 2D (2-dimensional) nucleation mode which was followed by a period of 3D (3-dimensional) island growth mode. Then, the 2D growth recovered after a few minutes and the streak RHEED pattern remained clear till the end of growth. The crystal quality of InAs thin films is dependent strongly on the As BEP. When the As BEP is $3.6{\times}10^{-6}$ Torr, the InAs thin film has a high electron mobility of 10,952 $cm^2/Vs$ at room temperature.

METALLIC INTERFACES IN HARSH CHEMO-MECHANICAL ENVIRONMENTS

  • Yildiz, Bilge;Nikiforova, Anna;Yip, Sidney
    • Nuclear Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.21-38
    • /
    • 2009
  • The use of multi scale modeling concepts and simulation techniques to study the destabilization of an ultrathin layer of oxide interface between a metal substrate and the surrounding environment is considered. Of particular interest are chemo-mechanical behavior of this interface in the context of a molecular-level description of stress corrosion cracking. Motivated by our previous molecular dynamics simulations of unit processes in materials strength and toughness, we examine the challenges of dealing with chemical reactivity on an equal footing with mechanical deformation, (a) understanding electron transfer processes using first-principles methods, (b) modeling cation transport and associated charged defect migration kinetics, and (c) simulation of pit nucleation and intergranular deformation to initiate the breakdown of the oxide interlayer. These problems illustrate a level of multi-scale complexity that would be practically impossible to attack by other means; they also point to a perspective framework that could guide future research in the broad computational science community.