• Title/Summary/Keyword: Nuclear power plant sites

Search Result 88, Processing Time 0.026 seconds

Characteristics of Zooplankton Community in the Coastal Waters of Wolseong Nuclear Power Plant, East Sea of Korea (월성원자력발전소 주변 해역 동물플랑크톤의 군집 특성)

  • Kim, Mi-Hyang;Moon, Hyung-Tae;Shin, Sang-Hee;Shon, Myung-Baek;Byun, Ju-Young;Choi, Hue-Chang;Son, Min-Ho
    • Korean Journal of Environmental Biology
    • /
    • v.28 no.1
    • /
    • pp.40-48
    • /
    • 2010
  • A total of 63 taxa was identified with a mean abundance of total zooplankton ranging from 85~28,087 indiv.$m^{-3}$. Cluster and nMDS analysis showed that the study sites could be divided into two regions: North and East part of the sampling area (group A) and South part of the sampling area (group B). The number of taxa and species varied significantly among the two regions (ANOVA, p<0.05). The pattern of the spatio-temporal distribution of the zooplankton community in the coastal waters around the Wolseong Nuclear Power Plant is affected by the variations of seasonal water temperature. However, zooplankton community were no significant between the water temperature and heated discharge.

Analysis of Effect of HVDC Transmission System on the Transient Stability (HVDC 송전망이 대형발전단지의 과도안정도에 미치는 영향 분석)

  • Jeon, Hyeok-Mo;Chun, Yeong-Han
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • The characteristics of Korean power systems are large capacity of generation sites and concentrated load in Seoul metropolitan area. According to the national generation facility plan, more generation facilities are needed to be constructed as the electrical demands are forecasted to increase. Moreover, the size of generation sites are expected to increase, too. Therefore transient stability problems become worse and worse. Recently, the necessity of HVDC has been raised to overcome the difficulty of constructing HVAC transmission lines. This paper shows the analysis of transient stability when HVDC transmission system is added to the power system consisting of large generation sites.

Analysis on Risk Factors of Reactor Containment Building Construction using Analytic Hierarchy Process (계층 분석 방법을 이용한 원자로 격납 건물 시공의 리스크 요인 분석)

  • Shin, Dae-Woong;Shin, Yoonseok;Kim, Gwang-Hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.4
    • /
    • pp.425-431
    • /
    • 2015
  • Since the construction of Kori 1 was completed in 1978, the construction projects for nuclear power plant are increasingly expanded into domestic and foreign sites. However, some of construction sites of nuclear power plant have the problems of process delay and cost loss due to lack of ability of risk management. The construction of reactor containment building in nuclear power plant is especially dotted with many risk factors because it needs professional skills and large-scale resources due to long duration compared with different construction phase. Therefore, it needs the study that analyzes risk factors expected in construction of reactor containment building and suggests way of stable performance of projects. So, this study assesses risk factors of construction of reactor containment building. For the objectives, this study uses survey for group of minority specialists of 36 experts. The risks of 24 factors is classified by criterions of process, cost, safety, and quality and the results of assessment is analyzed by analytic hierarchy process. As the results, the importance and priority of risk factors classified by each criterion were calculated and the applicability of analytic hierarchy process was identified to analyze risk factors of nuclear power plant construction. These will be baseline data for risk management in construction phase of reactor containment building.

DEVELOPMENT OF AN IMPROVED INSTALLATION PROCEDURE AND SCHEDULE OF RVI MODULARIZATION FOR APR1400

  • Ko, Do-Young
    • Nuclear Engineering and Technology
    • /
    • v.43 no.1
    • /
    • pp.89-98
    • /
    • 2011
  • The construction technology for reactor vessel internals (RVI) modularization is one of the most important factors to be considered in reducing the construction period of nuclear power plants. For RVI modularization, gaps between the reactor vessel (RV) core-stabilizing lug and the core support barrel (CSB) snubber lug must be measured using a remote method from outside the RV. In order to measure RVI gaps remotely at nuclear power plant construction sites, certain core technologies must be developed and verified. These include a remote measurement system to measure the gaps between the RV core-stabilizing lug and the CSB snubber lug, an RVI mockup to perform the gap measurement tests, and a new procedure and schedule for RVI installation. A remote measurement system was developed previously, and a gap measurement test was completed successfully using the RVI mockup. We also developed a new procedure and schedule for RVI installation. This paper presents the new and improved installation procedure and schedule for RVI modularization. These are expected to become core technologies that will allow us to shorten the construction period by a minimum of two months compared to the existing installation procedure and schedule.

Simple Empirical Attenuation Relationship for Potential Nuclear Power Plant Sites (원자력발전소의 단순화 된 실증적 지진감쇄 관계)

  • Tanwa, Kankang;Eric, Yee
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.9
    • /
    • pp.43-49
    • /
    • 2018
  • Seismic hazard assessments are performed on a variety of infrastructure projects. One component of a seismic hazard assessment is the attenuation relationship. Several attenuation relationships have been developed over the decades to predict peak ground acceleration under a variety of site conditions. For example, many attenuation relationships were designed to estimate peak ground acceleration, as well as other intensity measures, under a variety of soil conditions, mostly using the average shear wave velocity for the upper 30 m of earth material as a classification scheme. However, certain types of infrastructure, such as tunnels and nuclear power plants, are typically founded on and in bedrock. Using data from Japan, we developed a simple correlation to estimate peak ground acceleration for rock sites and compare the results from another popular attenuation relationship. Results indicate the popular attenuation relationship to be less than the proposed model for distances less than 200 km.

Application of Probabilistic Tsunami Hazard Analysis for the Nuclear Power Plant Site (원자력 발전소 부지에 대한 확률론적 지진해일 재해도 분석의 적용)

  • Rhee, Hyun-Me;Kim, Min Kyu;Sheen, Dong-Hoon;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.265-271
    • /
    • 2015
  • The tsunami hazard analysis is performed for testing the application of probabilistic tsunami hazard analysis to nuclear power plant sites in the Korean Peninsula. Tsunami hazard analysis is based on the seismic hazard analysis. Probabilistic method is adopted for considering the uncertainties caused by insufficient information of tsunamigenic fault sources. Logic tree approach is used. Uljin nuclear power plant (NPP) site is selected for this study. The tsunamigenic fault sources in the western part of Japan (East Sea) are used for this study because those are well known fault sources in the East Sea and had several records of tsunami hazards. We have performed numerical simulations of tsunami propagation for those fault sources in the previous study. Therefore we use the wave parameters obtained from the previous study. We follow the method of probabilistic tsunami hazard analysis (PTHA) suggested by the atomic energy society of Japan (AESJ). Annual exceedance probabilities for wave height level are calculated for the site by using the information about the recurrence interval, the magnitude range, the wave parameters, the truncation of lognormal distribution of wave height, and the deviation based on the difference between simulation and record. Effects of each parameters on tsunami hazard are tested by the sensitivity analysis, which shows that the recurrence interval and the deviation dominantly affects the annual exceedance probability and the wave heigh level, respectively.

Korean Status and Prospects for Radioactive Waste Management

  • Song, M.J.
    • Journal of Nuclear Fuel Cycle and Waste Technology
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • The safe management of radioactive waste is a national task required for sustainable generation of nuclear power and for energy self-reliance in Korea. Since the initial introduction of nuclear power to Korea in 1978, rapid growth in nuclear power has been achieved. This large nuclear power generation program has produced a significant amount of radioactive waste, both low- and intermediate-level waste (LILW) and spent nuclear fuel (SNF); and the amount of waste is steadily growing. For the management of LILW, the Wolsong LILW Disposal Center, which has a final waste disposal capacity of 800,000 drums, is under construction, and is expected to be completed by June 2014. Korean policy about how to manage the SNF has not yet been decided. In 2004, the Atomic Energy Commission decided that a national policy for SNF management should be established considering both technological development and public consensus. Currently, SNF is being stored at reactor sites under the responsibility of plant operator. The at-reactor SNF storage capacity will run out starting in 2024. In this paper, the fundamental principles and steps for implementation of a Korean policy for national radioactive waste management are introduced. Korean practices and prospects regarding radioactive waste management are also summarized, with a focus on strategy for policy-making on SNF management.

Ecological Characteristics of Marine Algal Communities at the Discharge Canals of Three Nuclear Power Plants on the East Coast of Korea (동해안 3개 원전 배수로 해조군집의 생태적 특성)

  • Kim, Young-Hwan;Ahn, Jung-Kwan
    • ALGAE
    • /
    • v.20 no.3
    • /
    • pp.217-224
    • /
    • 2005
  • The species composition and biomass of marine algae at the discharge canals of three (Gori, Wolseong and Uljin) nuclear power plants on the east coast of Korea were investigated seasonally from February 1992 to October 2000. As a result, 103-107 species of marine algae were found at the discharge canals during the past nine years. In general, algal communities established at the discharge canals were less diverse than those at the intake canals and control sites. 43 species (6 blue-green, 9 green, 10 brown and 18 red algae) of marine algae occurred more than 1/6 frequency and thus can be categorized as warm tolerant species. Among these, two green (Urospora penicilliformis, Cladophora albida), four brown (Sphacelaria divaricata, S. rigidula, Sargassum coreanum, S. fulvellum) and four red algae (Stylonema alsidii, Bangia atropurpurea, Hypnea charoides, Chondria crassicaulis) are recorded as warm tolerant marine algae for the first time in Korea during this study. Enteromorpha compressa, Padina arborescens, Amphiroa zonata and Ahnfeltiopsis flabelliformis were common species found more than 50% frequency at the discharge canals of all three nuclear power plants investigated. Dominant species in biomass were Padina arborescens and Amphiroa zonata. Results showed that, as a whole, the red algae appeared as predominant algal group at the discharge canals of all three nuclear power plants on the east coast of Korea. However, the biomass proportion of dominant algae at the discharge canals of each nuclear power plant varied over the year during the past nine years.

Study on multi-unit level 3 PSA to understand a characteristics of risk in a multi-unit context

  • Oh, Kyemin;Kim, Sung-yeop;Jeon, Hojun;Park, Jeong Seon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.975-983
    • /
    • 2020
  • Since the Fukushima Daiichi accident in 2011, concerns for the safety of multi-unit Nuclear Power Plant (NPP) sites have risen. This is because more than 70% of NPP sites are multi-unit sites that have two or more NPP units and a multi-unit accident occurred for the first time. After this accident, Probability Safety Assessment (PSA) has been considered in many countries as one of the tools to quantitatively assess the safety for multi-unit NPP sites. One of the biggest concerns for a multi-unit accident such as Fukushima is that the consequences (health and economic) will be significantly higher than in the case of a single-unit accident. However, many studies on multi-unit PSA have focused on Level 1 & 2 PSA, and there are many challenges in terms of public acceptance due to various speculations without an engineering background. In this study, two kinds of multi-unit Level 3 PSA for multi-unit site have been carried out. The first case was the estimation of multi-unit risk with conservative assumptions to investigate the margin between multi-unit risk and QHO, and the other was to identify the effect of time delays in releases between NPP units on the same site. Through these two kinds of assessments, we aimed at investigating the level of multi-unit risk and understanding the characteristics of risk in a multiunit context.

Analysis of severe accident progression and Cs behavior for SBO event during mid-loop operation of OPR1000 using MELCOR

  • Park, Yerim;Shin, Hoyoung;Kim, Seungwoo;Jin, Youngho;Kim, Dong Ha;Jae, Moosung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2859-2865
    • /
    • 2021
  • One of the important issues raised from the Fukushima-Daiichi accident is the safety of multi-unit sites when simultaneous accidents occur at the site and recently a multi-unit PSA methodology is being developed worldwide. Since all operation modes of the plant should be considered in the multi-unit PSA, the accident analysis needs to be performed for shutdown operation modes, too. In this study, a station blackout during the mid-loop operation is selected as a reference scenario. The overall accident progression for the mid-loop operation is slower than that for the full-power operation because the residual heat per mass of coolant is about 6 times lower than that in the mid-loop scenario. Though the fractions of Cs released from the core to the RCS in both operation modes are almost the same, the amount of Cs delivered to the containment atmosphere is quite different due to the chemisorption in the RCS. While 45.5% of the initial inventory is chemisorbed on the RCS surfaces during the full-power operation, only 2.2% during the mid-loop operation. The containment remains intact during the mid-loop operation, though 83.9% of Cs is delivered to the containment.