• Title/Summary/Keyword: Nuclear power plant concrete

Search Result 188, Processing Time 0.026 seconds

Effect of higher modes and multi-directional seismic excitations on power plant liquid storage pools

  • Eswaran, M.;Reddy, G.R.;Singh, R.K.
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.779-799
    • /
    • 2015
  • The slosh height and the possibility of water spill from rectangular Spent Fuel Storage Bays (SFSB) and Tray Loading Bays (TLB) of Nuclear power plant (NPP) are studied during 0.2 g, Safe Shutdown Earthquake (SSE) level of earthquake. The slosh height obtained through Computational Fluid dynamics (CFD) is compared the values given by TID-7024 (Housner 1963) and American concrete institute (ACI) seismic codes. An equivalent amplitude method is used to compute the slosh height through CFD. Numerically computed slosh height for first mode of vibration is found to be in agreement the codal values. The combined effect in longitudinal and lateral directions are studied separately, and found that the slosh height is increased by 24.3% and 38.9% along length and width directions respectively. There is no liquid spillage under SSE level of earthquake data in SFSB and TLB at convective level and at free surface acceleration data. Since seismic design codes do not have guidelines for combined excitations and effect of higher modes for irregular geometries, this CFD procedure can be opted for any geometries to study effect of higher modes and combined three directional excitations.

FACTORS OF GROUNDWATER FLUCTUATION IN SHIN KORI NUCLEAR POWER PLANTS IN KOREA

  • Hyun, Seung Gyu;Woo, Nam C.;Kim, Kue-Young;Lee, Hyun-A
    • Nuclear Engineering and Technology
    • /
    • v.45 no.4
    • /
    • pp.539-552
    • /
    • 2013
  • To establish an aging management plan considering seawater influx and changes in groundwater within nuclear power plant sites, the characteristics of groundwater flow must be understood. This study investigated the characteristics of groundwater flow within the site and analyzed groundwater level recorded by monitoring wells to evaluate groundwater flow characteristics and elements that affected these characteristics for supplying the information to conduct the appropriate aging management for ensuring the safety of the safety-related structures in Shin Kori Unit 1 and 2. The increase in groundwater level during the wet season results from high sea-level conditions and the large amount of precipitation. As a result of the analysis of groundwater distribution and change characteristics, the site could be divided into a rainfall-affected area and a tide-affected area. First, the rainfall-affected area can further be divided into areas that are affected simultaneously by excavation, backfill, and a permanent dewatering system. Secondly, areas that are not affected by excavation, or the dewatering system, or by structure arrangement and excavation. Analysis of the spectrum for wells affected by tides resulted in confirmation of the M2 component (12.421 hr) and S2 component (12.000 hr) of the semidiurnal tides, and the O1 component (25.819 hr) of the diurnal tides. In the cross-correlation results regarding tides and groundwater levels, the lag time occurred diversely within 1-3 hours by the effect of the well location from sea, the distribution of the backfill material with depth, and the concrete structure.

Cracking Behavior of Containment Wall of Nuclear Power Plant Reactor (원자력 발전소 격납건물 벽체의 균열거동)

  • Cho, Jae-Yeol;Kim, Nam-Sik;Cho, Nam-So;Choi, In-Kil
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.60-68
    • /
    • 2003
  • Tension tests of six half-thickness concrete containment wall elements were conducted as a part of Korea Atomic Energy Research Institute (KAERI) program. The aim of the KAERI test program is to provide a test-verified analytical method for estimating capacities of concrete reactor containment buildings under internal overpressurization from postulated degraded core accidents. The data from the tests reported herein should be useful for benchmarking analytical method that require modeling of material behavior including concrete cracking behavior and reinforcement/concrete interaction exhibited by the test. Major test variable is compressive strength of concrete, and its effect on the behavior of prestressed concrete panel subjected to biaxial tension is investigated.

The role of natural rock filler in optimizing the radiation protection capacity of the intermediate-level radioactive waste containers

  • Tashlykov, O.L.;Alqahtani, M.S.;Mahmoud, K.A.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3849-3854
    • /
    • 2022
  • The present work aims to optimize the radiation protection efficiency for ion-selective containers used in the liquid treatment for the nuclear power plant (NPP) cooling cycle. Some naturally occurring rocks were examined as filler materials to reduce absorbed dose and equivalent dos received from the radioactive waste container. Thus, the absorbed dose and equivalent dose were simulated at a distance of 1 m from the surface of the radioactive waste container using the Monte Carlo simulation. Both absorbed dose and equivalent dose rate are reduced by raising the filler thickness. The total absorbed dose is reduced from 7.66E-20 to 1.03E-20 Gy, and the equivalent dose is rate reduced from 183.81 to 24.63 µSv/h, raising the filler thickness between 0 and 17 cm, respectively. Also, the filler type significantly affects the equivalent dose rate, where the redorded equivalent dose rates are 24.63, 24.08, 27.63, 33.80, and 36.08 µSv/h for natural rocks basalt-1, basalt-2, basalt-sill, limestone, and rhyolite, respectively. The mentioned results show that the natural rocks, especially a thicker thickness (i.e., 17 cm thickness) of natural rocks basalt-1 and basalt-2, significantly reduce the gamma emissions from the radioactive wastes inside the modified container. Moreover, using an outer cementation concrete wall of 15 cm causes an additional decrease in the equivalent dose rate received from the container where the equivalent dose rate dropped to 6.63 µSv/h.

Seismic demand estimation of electrical cabinet in nuclear power plant considering equipment-anchor-interaction

  • Cho, Sung Gook;Salman, Kashif
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1382-1393
    • /
    • 2022
  • This paper investigates the seismic behavior of an electrical cabinet considering the influence of equipment-anchor-interaction (EAI) that is generally not taken into consideration in a decoupled analysis. The hysteresis behavior of an anchor bolt in concrete was thereby considered to highlight this interaction effect. To this end, the experimental behavior of an anchor bolt under reversed cyclic loading was taken from the recently developed literature, and a numerical model for the anchor hysteresis was developed using the component approach. The hysteresis properties were then used to calibrate the multi-linear link element that is implemented as a boundary condition for the cabinet incorporating the EAI. To highlight this EAI further, the nonlinear time history analysis was performed for a cabinet considering the hysteresis behavior comparative to a fixed boundary condition. Additionally, the influence on the seismic fragility was evaluated for the operational and structural condition of the cabinet. The numerical analysis considering the anchor hysteresis manifests that the in-cabinet response spectra (ICRS) are significantly amplified with the corresponding reduction in the seismic capacity of 25% and 15% for an operational and structural safety condition under the selected protocols. Considering the fixed boundary condition over a realistic hysteresis behavior of the anchor bolt is more likely to overestimate the seismic capacity of the cabinet in a seismic qualification procedure.

The Development of Steel-plate Concrete Panels with Preplaced Lightweight Aggregates Concrete (프리플레이스트 경량골재 콘크리트를 사용한 합성형 구조모듈 제작 및 성능 평가)

  • Yoon, Jin Young;Kim, Jae Hong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.21-28
    • /
    • 2017
  • The steel-plate concrete(SC) is used in a form of module assembly construction in the outer wall of nuclear-power plant and LNG containment. Since the steel-plate concrete modules are generally manufactured from the plant, the weight of SC has significantly effect on the total construction cost in the aspect of shipment. Therefore, the use of lightweight aggregates concrete(LWAC), which fill the inside of SC module can be a solution. However, the amount of used lightweight aggregates(LWA) is limited in the use of current concrete mixing process due to the concrete quality problems and it also determines the allowable minimum density of LWAC. In this research, the preplaced casting method is applied because of increasing the volume fraction of LWA significantly, which results from the producing process of pre-packing the LWA in the formwork and filling the interstitial voids between LWA using cement paste grout. The density and compressive strength of selected preplaced LWAC were $1,600kg/m^3$ and 30MPa and it was applied for the mock-up specimens of SC panel. It was used for the 3-point bending test for evaluating its structural performance. The results show that the preplaced LWAC can reduce the density of concrete with the adequate mechanical and structural performance.

Development of Risk Breakdown Structure of Nuclear Power Plant Decommissioning Project: Focusing on Structural Damage / Work Process Risks (원전 차폐 콘크리트 구조물 제염해체공사 리스크 분류체계 구축: 구조적 / 작업 리스크를 중심으로)

  • Kim, Byeol;Lee, Joo-Sung;Ahn, Yong-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.38-45
    • /
    • 2018
  • The purpose of this study is to deduct the structural damage / work process risks factors which can be occurred during the decommissioning in the NPP containment concrete structure. To achieve these purpose, risk profile specified in the construction industry is analyzed, and the work process of NPP decommissioning and the construction project were matched based on the similarity of each works. Accordingly, human and physical risk factors are classified. Finally, the risk associated with the building structure and work process was classified as per their process activities, and risk typology explaining the disaster which put the structure, equipments, machine and workers in serious danger was developed.

Inventory Estimation of 36Cl and 41Ca in Concrete of Kori Unit 1 (고리 1호기의 콘크리트 내 36Cl 및 41Ca의 방사화재고량 평가)

  • Jang, Mee;Lim, Jong Myoung;Kim, Hyun Chul;Kim, Chang-Jong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.1
    • /
    • pp.121-126
    • /
    • 2019
  • The radionuclide inventory prediction of a nuclear power plant can help establish decommissioning plan by providing information of radiation environment. Accumulated radionuclides in reactors and related facilities after reactor shutdown can be divided into neutron activated materials and contaminated materials. Among the neutron activated radionuclides, $^{36}Cl$ and $^{41}Ca$ are important from the viewpoint of disposal because of its long half-life and physiochemical characteristics. In this research, we calculated the radionuclides of $^{36}Cl$ and $^{41}Ca$ in bioshielding concrete by estimating the neutron flux and cross section using the MCNPX. And we evaluated the inventories of $^{36}Cl$ and $^{41}Ca$ using the activation calculation code ORIGEN2.

Axisymmetric Modeling of Dome Tendons in Nuclear Containment Building I. Theoretical Derivations (원전 격납건물 돔 텐던의 축대칭 모델링 기법 I. 이론식의 유도)

  • Jeon Se-Jin;Chung Chul-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.521-526
    • /
    • 2005
  • Prestressing tendons in a nuclear containment building dome are non-axisymmetrically arranged in most cases. However, simple axisymmetric modeling of the containment has been often employed in practice to estimate structural behavior for the axisymmetric loadings such as an internal pressure. In this case, the axisymmetric approximation is required for the actual tendon arrangements in the dome. Some procedures are proposed that can implement the actual 3-dimensional tendon stiffness and prestressing effect into the axisymmetric model. Prestressing tendons, which are arranged in 3 or 2-ways depending on a containment type, are converted into an equivalent layer to consider the stiffness contribution in meridional and hoop directions. In order to reflect the prestressing effect, equivalent load method and initial stress method are devised and the corresponding loads or stresses are derived in terms of the axisymmetric model. In a companion paper, the proposed schemes are applied into CANDU and KSNP(Korean Standard Nuclear Power Plant) type containments and are verified through some numerical examples comparing the analysis results with those of the actual 3-dimensional model.

Research on the impact effect of AP1000 shield building subjected to large commercial aircraft

  • Wang, Xiuqing;Wang, Dayang;Zhang, Yongshan;Wu, Chenqing
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1686-1704
    • /
    • 2021
  • This study addresses the numerical simulation of the shield building of an AP1000 nuclear power plant (NPP) subjected to a large commercial aircraft impact. First, a simplified finite element model (F.E. model) of the large commercial Boeing 737 MAX 8 aircraft is established. The F.E. model of the AP1000 shield building is constructed, which is a reasonably simplified reinforced concrete structure. The effectiveness of both F.E. models is verified by the classical Riera method and the impact test of a 1/7.5 scaled GE-J79 engine model. Then, based on the verified F.E. models, the entire impact process of the aircraft on the shield building is simulated by the missile-target interaction method (coupled method) and by the ANSYS/LS-DYNA software, which is at different initial impact velocities and impact heights. Finally, the laws and characteristics of the aircraft impact force, residual velocity, kinetic energy, concrete damage, axial reinforcement stress, and perforated size are analyzed in detail. The results show that all of them increase with the addition to the initial impact velocity. The first four are not very sensitive to the impact height. The engine impact mainly contributes to the peak impact force, and the peak impact force is six times higher than that in the first stage. With increasing initial impact velocity, the maximum aircraft impact force rises linearly. The range of the tension and pressure of the reinforcement axial stress changes with the impact height. The perforated size increases with increasing impact height. The radial perforation area is almost insensitive to the initial impact velocity and impact height. The research of this study can provide help for engineers in designing AP1000 shield buildings.