• Title/Summary/Keyword: Nuclear factor (erythroid-derived 2)-like 2 protein

Search Result 15, Processing Time 0.028 seconds

Oxymatrine inhibits the pyroptosis in rat insulinoma cells by affecting nuclear factor kappa B and nuclear factor (erythroid-derived 2)-like 2 protein/heme oxygenase-1 pathways

  • Gao, Jingying;Xia, Lixia;Wei, Yuanyuan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.3
    • /
    • pp.165-174
    • /
    • 2022
  • As the mechanism underlying glucose metabolism regulation by oxymatrine is unclear, this study investigated the effects of oxymatrine on pyroptosis in INS-1 cells. Flow cytometry was employed to examine cell pyroptosis and reactive oxygen species (ROS) production. Cell pyroptosis was also investigated via transmission electron microscopy and lactate dehydrogenase (LDH) release. Protein levels were detected using western blotting and interleukin (IL)-1β and IL-18 secretion by enzyme-linked immunosorbent assay. The caspase-1 activity and DNA-binding activity of nuclear factor kappa B (NF-κB) and nuclear factor (erythroid-derived 2)-like 2 protein (Nrf2) were also assessed. In the high glucose and high fat-treated INS-1 cells (HG + PA), the caspase-1 activity and LDH content, as well as Nod-like receptor family pyrin domain containing 3, Gsdmd-N, caspase-1, apoptosis-associated speck-like protein containing a CARD, IL-1β, and IL-18 levels were increased. Moreover, P65 protein levels increased in the nucleus but decreased in the cytoplasm. Oxymatrine attenuated these effects and suppressed high glucose and high fat-induced ROS production. The increased levels of nuclear Nrf2 and heme oxygenase-1 (HO-1) in the HG + PA cells were further elevated after oxymatrine treatment, whereas cytoplasmic Nrf2 and Keleh-like ECH-associated protein levels decreased. Additionally, the elevated transcriptional activity of p65 in HG + PA cells was reduced by oxymatrine, whereas that of Nrf2 increased. The results indicate that the inhibition of pyroptosis in INS-1 cells by oxymatrine, a key factor in its glucose metabolism regulation, involves the suppression of the NF-κB pathway and activation of the Nrf2/HO-1 pathway.

Red ginseng-derived saponin fraction inhibits lipid accumulation and reactive oxygen species production by activating nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1) pathway (홍삼 사포닌 분획의 Nrf2 Keap1 신호전달체계 조절을 통한 지방축적 및 활성산소종 억제효과)

  • Kim, Chae-Young;Kang, Bobin;Hwang, Jisu;Choi, Hyeon-Son
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.6
    • /
    • pp.688-696
    • /
    • 2018
  • This study aimed to investigate the effects of red ginseng-derived saponin fraction (SF) on lipid accumulation, reactive oxygen species (ROS) production, and nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1) signaling during adipocyte differentiation. SF effectively inhibited lipid accumulation, with the downregulation of adipogenic factors such as peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) and CCAAT/enhancer-binding protein alpha ($C/EBP{\alpha}$). A high dose of SF decreased the protein levels of $PPAR{\gamma}$ and $C/EBP{\alpha}$ by over 90% compared to the control. SF-mediated downregulation of adipogenic factors was due to the regulation of early adipogenic factors including $C/EBP{\beta}$ and $Kr{\ddot{u}}ppel$-like Factor 2 (KLF2). In addition, SF ($200{\mu}g/mg$) decreased intracellular ROS generation by 40% during adipocyte differentiation. However, the SF significantly upregulated Nrf2 and its target proteins, hemoxygenase-1 (HO-1) and NADPH dehydrogenase quinone 1 (NQO1). Furthermore, SF ($200{\mu}g/mg$) promoted the nuclear translocation of Nrf2. The SF-mediated reduction of lipid accumulation was associated with the regulation of the Nrf2/Keap1 pathway.

Zearalenone regulates key factors of the Kelch-like erythroid cell-derived protein with CNC homology-associated protein 1-nuclear factor erythroid 2-related factor 2 signaling pathway in duodenum of post-weaning gilts

  • Cheng, Qun;Jiang, Shu zhen;Huang, Li bo;Yang, Wei ren;Yang, Zai bin
    • Animal Bioscience
    • /
    • v.34 no.8
    • /
    • pp.1403-1414
    • /
    • 2021
  • Objective: This study explored the mechanism of the Kelch-like erythroid cell-derived protein with CNC homology-associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway under conditions of zearalenone (ZEA)-induced oxidative stress in the duodenum of post-weaning gilts. Methods: Forty post-weaning gilts were randomly allocated to four groups and fed diets supplemented with 0, 0.5, 1.0, or 1.5 mg/kg ZEA. Results: The results showed significant reductions in the activity of the antioxidant enzymes total superoxide dismutase and glutathione peroxidase and increases the malondialdehyde content with increasing concentrations of dietary ZEA. Immunohistochemical analysis supported these findings by showing a significantly increased expression of Nrf2 and glutathione peroxidase 1 (GPX1) with increasing concentrations of ZEA. The relative mRNA and protein expression of Nrf2, GPX1 increased linearly (p<0.05) and quadratically (p<0.05), which was consistent with the immunohistochemical results. The relative mRNA expression of Keap1 decreased linearly (p<0.05) and quadratically (p<0.05) in the duodenum as the ZEA concentration increased in the diet. The relative mRNA expression of modifier subunit of glutamate-cysteine ligase (GCLM) increased quadratically (p<0.05) in all ZEA treatment groups and the relative mRNA expression of quinone oxidoreductase 1 (NQO1) catalytic subunit of glutamate-cysteine ligase decreased linearly (p<0.05) and quadratically (p<0.05) in the ZEA1.0 group and ZEA1.5 group. The relative protein expression of Keap1 and GCLM decreased quadratically (p<0.05) in the duodenum as the ZEA concentration increased in the diet, respectively. The relative protein expression of NQO1 increased linearly (p<0.05) and quadratically (p<0.05) in all ZEA treatment groups in the duodenum. Conclusion: These findings suggest that ZEA regulates the expression of key factors of the Keap1-Nrf2 signaling pathway in the duodenum, which enables resistance to ZEA-induced oxidative stress. Further studies are needed to examine the effects of ZEA induced oxidative stress on other tissues and organs in post-weaning gilts.

Panax ginseng exerts antidepressant-like effects by suppressing neuroinflammatory response and upregulating nuclear factor erythroid 2 related factor 2 signaling in the amygdala

  • Choi, Jong Hee;Lee, Min Jung;Jang, Minhee;Kim, Hak-Jae;Lee, Sanghyun;Lee, Sang Won;Kim, Young Ock;Cho, Ik-Hyun
    • Journal of Ginseng Research
    • /
    • v.42 no.1
    • /
    • pp.107-115
    • /
    • 2018
  • Background: Depression is one of the most commonly diagnosed neuropsychiatric diseases, but the underlying mechanism and medicine are not well-known. Although Panax ginseng has been reported to exert protective effects in various neurological studies, little information is available regarding its antidepressant effects. Methods: Here, we examined the antidepressant effect and underlying mechanism of P. ginseng extract (PGE) in a chronic restraint stress (CRS)-induced depression model in mice. Results: Oral administration of PGE for 14 d decreased immobility (depression-like behaviors) time in forced swim and tail suspended tests after CRS induction, which corresponded with attenuation of the levels of serum adrenocorticotropic hormone and corticosterone, as well as attenuated c-Fos expression in the amygdala. PGE enhanced messenger RNA expression level of brain-derived neurotrophic factor but ameliorated microglial activation and neuroinflammation (the level of messenger RNA and protein expression of cyclooxygenase-2 and inducible nitric oxide synthase) in the amygdala of mice after CRS induction. Interestingly, 14-d treatment with celecoxib, a selective cyclooxygenase-2 inhibitor, and $N_{\omega}$-nitro-L-arginine methyl ester hydrochloride, a selective inducible nitric oxide synthase inhibitor, attenuated depression-like behaviors after CRS induction. Additionally, PGE inhibited the upregulation of the nuclear factor erythroid 2 related factor 2 and heme oxygenase-1 pathways. Conclusion: Taken together, our findings suggest that PGE exerts antidepressant-like effect of CRS-induced depression by antineuroinflammatory and antioxidant (nuclear factor erythroid 2 related factor 2/heme oxygenase-1 activation) activities by inhibiting the hypothalamo-pituitary-adrenal axis mechanism. Further studies are needed to evaluate the potential of components of P. ginseng as an alternative treatment of depression, including clinical trial evaluation.

Non-saponin fraction of red ginseng inhibits monocyte-to-macrophage differentiation and inflammatory responses in vitro (홍삼 비사포닌 분획의 단핵세포 분화와 염증반응에 대한 억제효과)

  • Kang, Bobin;Kim, Chae Young;Hwang, Jisu;Choi, Hyeon-Son
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.1
    • /
    • pp.70-80
    • /
    • 2019
  • The aim of this study was to investigate the effects of red ginseng-derived non-saponin fraction (NSF) on inflammatory responses and monocyte-to-macrophage differentiation in RAW264.7 and THP-1. NSF effectively inhibited inflammatory responses by downregulating nitric oxide (NO) production and protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). NSF ($2000{\mu}g/mL$) decreased the levels of NO, iNOS, and COX-2 by 33, 83, and 64%, respectively. NSF inhibited the differentiation of monocyte-to-macrophage by decreasing cell adherence along with downregulation of the cluster of differentiation molecule $11{\beta}$ ($CD11{\beta}$) and CD36. In addition, pro-inflammatory cytokines, such as tumor necrosis factor-alpha, interleukin 6, and monocyte chemoattractant protein 1 (MCP-1), were significantly reduced with NSF treatment. The NSF-mediated inhibition of inflammatory responses was due to the regulation of nuclear factor kappa-light-chain-enhancer of activated B cells ($NF-{\kappa}B$) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2). NSF effectively suppressed the translocation of $NF-{\kappa}B$ into the nucleus, while nuclear Nrf2 and its target protein, heme oxygenase-1, levels were significantly increased.

Effects of dietary Antrodia cinnamomea fermented product supplementation on metabolism pathways of antioxidant, inflammatory, and lipid metabolism pathways-a potential crosstalk

  • Lee, M.T.;Lin, W.C.;Lin, L.J.;Wang, S.Y.;Chang, S.C.;Lee, T.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.7
    • /
    • pp.1167-1179
    • /
    • 2020
  • Objective: This study was conducted to fathom the underlying mechanisms of nutrition intervention and redox sensitive transcription factors regulated by Antrodia cinnamomea fermented product (FAC) dietary supplementation in broiler chickens. Methods: Four hundreds d-old broilers (41±0.5 g/bird) assigned to 5 groups were examined after consuming control diet, or control diet replaced with 5% wheat bran (WB), 10% WB, 5% FAC, and 10% FAC. Liver mRNA expression of antioxidant, inflammatory and lipid metabolism pathways were analyzed. Prostaglandin E2 (PGE2) concentration in each group were tested in the chicken peripheral blood mononuclear cells (cPBMCs) of 35-d old broilers to represent the stress level of the chickens. Furthermore, these cells were stimulated with 2,2'-Azobis(2-amidinopropane) dihydrochloride (AAPH) and lipopolysaccharide (LPS) to evaluate the cell stress tolerance by measuring cell viability and oxidative species. Results: Heme oxygenase-1, glutathione S-transferase, glutamate-cysteine ligase, catalytic subunit, and superoxide dismutase, and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) that regulates the above antioxidant genes were all up-regulated significantly in FAC groups. Reactive oxygen species modulator protein 1 and NADPH oxygenase 1 were both rather down-regulated in 10% FAC group as comparison with two WB groups. Despite expressing higher level than control group, birds receiving diet containing FAC had significantly lower expression level in nuclear factor-kappa B (NF-κB) and other genes (inducible nitric oxide synthase, tumor necrosis factor-α, interleukin-1β, nucleotide-binding domain, leucine-richcontaining family, pyrin domain-containing-3, and cyclooxygenase 2) involving in inflammatory pathways. Additionally, except for 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase that showed relatively higher in both groups, the WB, lipoprotein lipase, Acetyl-CoA carboxylase, fatty acid synthase, fatty acid binding protein, fatty acid desaturase 2 and peroxisome proliferator-activated receptor alpha genes were expressed at higher levels in 10% FAC group. In support of above results, promoted Nrf2 and inhibited NF-κB nuclear translocation in chicken liver were found in FAC containing groups. H2O2 and NO levels induced by LPS and AAPH in cPBMCs were compromised in FAC containing diet. In 35-d-old birds, PGE2 production in cPBMCs was also suppressed by the FAC diet. Conclusion: FAC may promote Nrf2 antioxidant pathway and positively regulate lipid metabolism, both are potential inhibitor of NF-κB inflammatory pathway.

Korean red ginseng water extract produces antidepressant-like effects through involving monoamines and brain-derived neurotrophic factor in rats

  • Tzu-wen Chou ;Huai-Syuan Huang;Suraphan Panyod ;Yun-Ju Huang ;Lee-Yan Sheen
    • Journal of Ginseng Research
    • /
    • v.47 no.4
    • /
    • pp.552-560
    • /
    • 2023
  • Background: Ginseng Radix (Panax ginseng Meyer, Araliaceae) has been used medicinally to treat the brain and nervous system problems worldwide. Recent studies have revealed physiological effects that could potentially benefit cognitive performance or mood. The present study aimed to investigate the antidepressant effects of Korean red ginseng water extract (KGE) and its active component in an unpredictable chronic mild stress (UCMS)-induced animal model and elucidate the underlying mechanisms. Methods: The antidepressant potential of the UCMS model was evaluated using the sucrose preference test and open field tests. The behavioral findings were further corroborated by the assessment of neurotransmitters and their metabolites from the prefrontal cortex and hippocampus of rats. Three doses of KGE (50, 100, and 200 mg/kg) were orally administered during the experiment. Furthermore, the mechanism underlying the antidepressant-like action of KGE was examined by measuring the levels of brain-derived neurotrophic factor (BDNF)/CREB, nuclear factor erythroid 2-related factor 2 (Nrf2), and Kelch-like ECH-associated protein 1 (Keap1) proteins in the prefrontal cortex of UCMS-exposed rats. Results: KGE treatment normalized UCMS-induced depression-related behaviors. Neurotransmitter studies conducted after completing behavioral experiments demonstrated that KGE caused a reduction in the ratio of serotonin and dopamine, indicating a decrease in serotonin and dopamine turnover. Moreover, the expression of BDNF, Nrf2, Keap1 and AKT were markedly increased by KGE in the prefrontal cortex of depressed rats. Conclusion: Our results provide evidence that KGE and its constituents exert antidepressant effects that mediate the dopaminergic and serotonergic systems and expression of BDNF protein in an animal model.

Korean Red Ginseng alleviates dehydroepiandrosterone-induced polycystic ovarian syndrome in rats via its antiinflammatory and antioxidant activities

  • Choi, Jong Hee;Jang, Minhee;Kim, Eun-Jeong;Lee, Min Jung;Park, Kyoung Sun;Kim, Seung-Hyun;In, Jun-Gyo;Kwak, Yi-Seong;Park, Dae-Hun;Cho, Seung-Sik;Nah, Seung-Yeol;Cho, Ik-Hyun;Bae, Chun-Sik
    • Journal of Ginseng Research
    • /
    • v.44 no.6
    • /
    • pp.790-798
    • /
    • 2020
  • Background: Beneficial effects of Korean Red Ginseng (KRG) on polycystic ovarian syndrome (PCOS) remains unclear. Methods: We examined whether pretreatment (daily from 2 hours before PCOS induction) with KRG extract in water (KRGE; 75 and 150 mg/kg/day, p.o.) could exert a favorable effect in a dehydroepian-drosterone (DHEA)-induced PCOS rat model. Results: Pretreatment with KRGE significantly inhibited the elevation of body and ovary weights, the increase in number and size of ovarian cysts, and the elevation of serum testosterone and estradiol levels induced by DHEA. Pretreatment with KRGE also inhibited macrophage infiltration and enhanced mRNA expression levels of chemokines [interleukin (IL)-8, monocyte chemoattractant protein-1), proinflammatory cytokines (IL-1β, IL-6), and inducible nitric oxide synthase in ovaries induced by DHEA. It also prevented the reduction in mRNA expression of growth factors (epidermal growth factor, transforming growth factor-beta (EGF, TGF-β)) related to inhibition of the nuclear factor kappa-light-chain-enhancer of activated B cell pathway and stimulation of the nuclear factor erythroid-derived 2-related factor 2 pathway. Interestingly, KRGE or representative ginsenosides (Rb1, Rg1, and Rg3(s)) inhibited the activity of inflammatory enzymes cyclooxygenase-2 and iNOS, cytosolic p-IκB, and nuclear p-nuclear factor kappa-light-chain-enhancer of activated B in lipopolysaccharide-induced RAW264.7 cells, whereas they increased nuclear factor erythroid-derived 2-related factor 2 nuclear translocation. Conclusion: These results provide that KRGE could prevent DHEA-induced PCOS via antiinflammatory and antioxidant activities. Thus, KRGE may be used in preventive and therapeutic strategies for PCOS-like symptoms.

Protective effects of 5-aminolevulinic acid on heat stress in bovine mammary epithelial cells

  • Islam, Md Aminul;Noguchi, Yoko;Taniguchi, Shin;Yonekura, Shinichi
    • Animal Bioscience
    • /
    • v.34 no.6
    • /
    • pp.1006-1013
    • /
    • 2021
  • Objective: Cells have increased susceptibility to activation of apoptosis when suffering heat stress (HS). An effective supplementation strategy to mimic heat-induced apoptosis of bovine mammary epithelial cells (MECs) is necessary to maintain optimal milk production. This study aimed to investigate possible protective effects of the anti-apoptotic activity of 5-aminolevulinic acid (5-ALA) against HS-induced damage of bovine MECs. Methods: Bovine MECs were pretreated with or without 5-ALA at concentrations of 10, 100, and 500 µM for 24 h followed by HS (42.5℃ for 24 h and 48 h). Cell viability was measured with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. Real-time quantitative polymerase chain reaction and Western blotting were used to explore the regulation of genes associated with apoptosis, oxidative stress, and endoplasmic reticulum (ER) stress genes. Results: We found that 5-ALA induces cytoprotection via inhibition of apoptosis markers after HS-induced damage. Pretreatment of bovine MECs with 5-ALA resulted in dramatic upregulation of mRNA for nuclear factor erythroid-derived 2-like factor 2, heme oxygenase-1, and NAD(P)H quinone oxidoreductase 1, all of which are antioxidant stress genes. Moreover, 5-ALA pretreatment significantly suppressed HS-induced ER stress-associated markers, glucose-regulated protein 78, and C/EBP homologous protein expression levels. Conclusion: 5-ALA can ameliorate the ER stress in heat stressed bovine MEC via enhancing the expression of antioxidant gene.

Effects of Transient Treatment with Rotenone, a Mitochondrial Inhibitor, on Mouse Subventricular Zone Neural Stem Cells (미토콘드리아 저해제인 rotenone의 일시적 처리가 쥐의 뇌실 하 영역 신경 줄기 세포에 미치는 영향)

  • Park, Ki-Youb;Kim, Man Su
    • Journal of Life Science
    • /
    • v.29 no.12
    • /
    • pp.1329-1336
    • /
    • 2019
  • Subventricular zone (SVZ) in the brain contains neural stem cells (NSCs) which self-renew and differentiate to neurons and glial cells during postnatal period and throughout adulthood. Since fate decision to either proliferation or differentiation has to respond to intracellular and extracellular conditions, many intrinsic and extrinsic factors are involved. Among them, mitochondria have been reported to participate in fate decision of NSCs. In our previous report, we showed that long-term treatment of a mitochondrial inhibitor rotenone greatly inhibited neurogenesis. In this study, we examined the effects of short-term treatment of rotenone on SVZ NSCs. We found that (1) even one-day treatment of rotenone significantly reduced neurogenesis and earlier time points seemed to be more sensitive to rotenone, (2) a number of Mash1+ transit amplifying cells was decreased by one-day treatment of rotenone, (3) short-term treatment of rotenone eliminated most of the differentiated Tuj1+ neurons and Olig2+ oligodendrocytes, while glial fibrillary acidic protein (GFAP)+ astrocytes were not affected, and (4) sulfiredoxin 1 (Srxn1) gene expression was increased after one-day treatment of rotenone, indicating activation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway. All these results confirm that functional mitochondria are necessary during differentiation to neurons or oligodendrocytes as well as maintenance of neurons after differentiation. Also, these data suggest that temporary exposure to mitochondrial inhibitor such as rotenone might have long-term effects on neurogenic potential of NSCs.