Protective effects of 5-aminolevulinic acid on heat stress in bovine mammary epithelial cells |
Islam, Md Aminul
(Graduate School of Medicine, Science and Technology, Shinshu University)
Noguchi, Yoko (Neopharma Japan Co., Ltd.) Taniguchi, Shin (Neopharma Japan Co., Ltd.) Yonekura, Shinichi (Graduate School of Medicine, Science and Technology, Shinshu University) |
1 | St-Pierre NR, Cobanov B, Schnitkey G. Economic losses from heat stress by US livestock industries. J Dairy Sci 2003;86(Suppl):E52-77. https://doi.org/10.3168/jds.S0022-0302(03)74040-5 DOI |
2 | West JW. Effects of heat-stress on production in dairy cattle. J Dairy Sci 2003;86:2131-44. https://doi.org/10.3168/jds.S0022-0302(03)73803-X DOI |
3 | Wheelock JB, Rhoads RP, VanBaale MJ, Sanders SR, Baumgard LH. Effects of heat stress on energetic metabolism in lactating Holstein cows. J Dairy Sci 2010;93:644-55. https://doi.org/10.3168/jds.2009-2295 DOI |
4 | Alemu TW, Pandey HO, Wondim DS, et al. Oxidative and endoplasmic reticulum stress defense mechanisms of bovine granulosa cells exposed to heat stress. Theriogenology 2018;110:130-41. https://doi.org/10.1016/j.theriogenology.2017.12.042 DOI |
5 | Iurlaro R, Munoz-Pinedo C. Cell death induced by endoplasmic reticulum stress. FEBS J 2016;283:2640-52. https://doi.org/10.1111/febs.13598 DOI |
6 | Gan L, Johnson JA. Oxidative damage and the Nrf2-ARE pathway in neurodegenerative diseases. Biochim Biophys Acta Mol Basis Dis 2014;1842:1208-18. https://doi.org/10.1016/j.bbadis.2013.12.011 DOI |
7 | Stefanson AL, Bakovic M. Dietary regulation of Keap1/Nrf2/ARE pathway: focus on plant-derived compounds and trace minerals. Nutrients 2014;6:3777-801. https://doi.org/10.3390/nu6093777 DOI |
8 | Han MH, Park C, Lee DS, et al. Cytoprotective effects of esculetin against oxidative stress are associated with the up-regulation of Nrf2-mediated NQO1 expression via the activation of the ERK pathway. Int J Mol Med 2017;39:380-6. https://doi.org/10.3892/ijmm.2016.2834 DOI |
9 | Kadzere CT, Murphy MR, Silanikove N, Maltz E. Heat stress in lactating dairy cows: a review. Livest Prod Sci 2002;77:59-91. https://doi.org/10.1016/S0301-6226(01)00330-X DOI |
10 | Capuco AV, Wood DL, Baldwin R, Mcleod K, Paape MJ. Mammary cell number, proliferation, and apoptosis during a bovine lactation: relation to milk production and effect of bST. J Dairy Sci 2001;84:2177-87. https://doi.org/10.3168/jds.S0022-0302(01)74664-4 DOI |
11 | Takayama S, Reed JC, Homma S. Heat-shock proteins as regulators of apoptosis. Oncogene 2003;22:9041-7. https://doi.org/10.1038/sj.onc.1207114 DOI |
12 | Jin XL, Wang K, Liu L, Liu HY, Zhao FQ, Liu JX. Nuclear factor-like factor 2-antioxidant response element signaling activation by tert-butylhydroquinone attenuates acute heat stress in bovine mammary epithelial cells. J Dairy Sci 2016;99:9094-103. https://doi.org/10.3168/jds.2016-11031 DOI |
13 | Cao SS, Kaufman RJ. Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid Redox Signal 2014;21:396-413. https://doi.org/10.1089/ars.2014.5851 DOI |
14 | Patil C, Walter P. Intracellular signaling from the endoplasmic reticulum to the nucleus: the unfolded protein response in yeast and mammals. Curr Opin Cell Biol 2001;13:349-55. https://doi.org/10.1016/S0955-0674(00)00219-2 DOI |
15 | Spaan CN, Smit WL, van Lidth de Jeude JF, et al. Expression of UPR effector proteins ATF6 and XBP1 reduce colorectal cancer cell proliferation and stemness by activating PERK signaling. Cell Death Dis 2019;10:490. https://doi.org/10.1038/s41419-019-1729-4 DOI |
16 | Xu X, Gupta S, Hu W, McGrath BC, Cavener DR. Hyperthermia induces the ER stress pathway. PLoS One 2011;6:e23740. https://doi.org/10.1371/journal.pone.0023740 DOI |
17 | Liu C, Fujino M, Zhu S, et al. 5-ALA/SFC enhances HO-1 expression through the MAPK/Nrf2 antioxidant pathway and attenuates murine tubular epithelial cell apoptosis. FEBS Open Bio 2019;9:1928-38. https://doi.org/10.1002/2211-5463.12729 DOI |
18 | Yonekura S, Tsuchiya M, Tokutake Y, et al. The unfolded protein response is involved in both differentiation and apoptosis of bovine mammary epithelial cells. J Dairy Sci 2018;101:3568-78. https://doi.org/10.3168/jds.2017-13718 DOI |
19 | Rodriguez BL, Curb JD, Davis J, et al. Use of the dietary supplement 5-aminiolevulinic acid (5-ALA) and its relationship with glucose levels and hemoglobin A1C among individuals with prediabetes. Clin Transl Sci 2012;5:314-20. https://doi.org/10.1111/j.1752-8062.2012.00421.x DOI |
20 | Fujino M, Nishio Y, Ito H, Tanaka T, Li XK. 5-Aminolevulinic acid regulates the inflammatory response and alloimmune reaction. Int Immunopharmacol 2016;37:71-8. https://doi.org/10.1016/j.intimp.2015.11.034 DOI |
21 | Uchida A, Kidokoro K, Sogawa Y, et al. 5-Aminolevulinic acid exerts renoprotective effect via Nrf2 activation in murine rhabdomyolysis-induced acute kidney injury. Nephrology 2019;24:28-38. https://doi.org/10.1111/nep.13189 DOI |
22 | Liu C, Zhu P, Fujino M, et al. 5-aminolaevulinic acid (ALA), enhances heme oxygenase (HO)-1 expression and attenuates tubulointerstitial fibrosis and renal apoptosis in chronic cyclosporine nephropathy. Biochem Biophys Res Commun 2019;508:583-9. https://doi.org/10.1016/j.bbrc.2018.11.175 DOI |
23 | Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2000;2:326-32. https://doi.org/10.1038/35014014 DOI |
24 | Zhao M, Zhu P, Fujino M, et al. 5-Aminolevulinic acid with sodium ferrous citrate induces autophagy and protects cardiomyocytes from hypoxia-induced cellular injury through MAPK-Nrf-2-HO-1 signaling cascade. Biochem Biophys Res Commun 2016;479:663-9. https://doi.org/10.1016/j.bbrc.2016.09.156 DOI |
25 | Terada Y, Inoue K, Matsumoto T, et al. 5-Aminolevulinic acid protects against cisplatin-induced nephrotoxicity without compromising the anticancer efficiency of cisplatin in rats in vitro and in vivo. PLoS One 2013;8:e80850. https://doi.org/10.1371/journal.pone.0080850 DOI |
26 | Hou J, Cai S, Kitajima Y, et al. 5-Aminolevulinic acid combined with ferrous iron induces carbon monoxide generation in mouse kidneys and protects from renal ischemia-reperfusion injury. Am J Physiol Renal Physiol 2013;305:F1149-57. https://doi.org/10.1152/ajprenal.00275.2013 DOI |
27 | Li C, Wang Y, Li L, Han Z, Mao S, Wang G. Betaine protects against heat exposure-induced oxidative stress and apoptosis in bovine mammary epithelial cells via regulation of ROS production. Cell Stress Chaperones 2019;24:453-60. https://doi.org/10.1007/s12192-019-00982-4 DOI |
28 | Sharmin MM, Mizusawa M, Hayashi S, Arai W, Sakata S, Yonekura S. Effects of fatty acids on inducing endoplasmic reticulum stress in bovine mammary epithelial cells. J Dairy Sci 2020;103:8643-54. https://doi.org/10.3168/jds.2019-18080 DOI |
29 | Zinszner H, Kuroda M, Wang XZ, et al. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 1998;12:982-95. https://doi.org/10.1101/gad.12.7.982 DOI |
30 | Hou CH, Lin FL, Hou SM, Liu JF. Hyperthermia induces apoptosis through endoplasmic reticulum and reactive oxygen species in human osteosarcoma cells. Int J Mol Sci 2014;15:17380-95. https://doi.org/10.3390/ijms151017380 DOI |