• Title/Summary/Keyword: Nuclear factor $NF-{\kappa}B$

Search Result 798, Processing Time 0.025 seconds

Tusc2/Fus1 regulates osteoclast differentiation through NF-κB and NFATc1

  • Kim, Inyoung;Kim, Jung Ha;Kim, Kabsun;Seong, Semun;Kim, Nacksung
    • BMB Reports
    • /
    • v.50 no.9
    • /
    • pp.454-459
    • /
    • 2017
  • Tumor suppressor candidate 2 (Tusc2, also known as Fus1) regulates calcium signaling, and $Ca^{2+}$-dependent nuclear factor of activated T-cells (NFAT) and nuclear factor kappa B ($NF-{\kappa}B$) pathways, which play roles in osteoclast differentiation. However, the role of Tusc2 in osteoclasts remains unknown. Here, we report that Tusc2 positively regulates the differentiation of osteoclasts. Overexpression of Tusc2 in osteoclast precursor cells enhanced receptor activator of nuclear factor ${\kappa}B$ ligand (RANKL)-induced osteoclast differentiation. In contrast, small interfering RNA-mediated knockdown of Tusc2 strongly inhibited osteoclast differentiation. In addition, Tusc2 induced the activation of RANKL-mediated $NF-{\kappa}B$ and calcium/calmodulin-dependent kinase IV (CaMKIV)/cAMP-response element (CRE)-binding protein CREB signaling cascades. Taken together, these results suggest that Tusc2 acts as a positive regulator of RANKL-mediated osteoclast differentiation.

Plasma Nuclear Factor Kappa B and Serum Peroxiredoxin 3 in Early Diagnosis of Hepatocellular Carcinoma

  • Ismail, Saber;Mayah, Wael;Battia, Hassan El;Gaballah, Hanaa;Jiman-Fatani, Asif;Hamouda, Hala;Afifi, Mohamed A.;Elmashad, Nehal;Saadany, Sherif El
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.4
    • /
    • pp.1657-1663
    • /
    • 2015
  • Background: Early diagnosis of hepatocellular carcinoma (HCC) is the most important step in successful treatment. However, it is usually rare due to the lack of a highly sensitive specific biomarker so that the HCC is usually fatal within few months after diagnosis. The aim of this work was to study the role of plasma nuclear factor kappa B (NF-${\kappa}B$) and serum peroxiredoxin 3 (PRDX3) as diagnostic biomarkers for early detection of HCC in a high-risk population. Materials and Methods: Plasma nuclear factor kappa B level (NF-${\kappa}B$) and serum peroxiredoxin 3 (PRDX3) levels were measured using enzyme linked immunosorbent assay (ELISA), in addition to alpha-fetoprotein (AFP) in 72 cirrhotic patients, 64 patients with HCC and 29 healthy controls. Results: NF-${\kappa}B$ and PRDX3 were significantly elevated in the HCC group in relation to the others. Higher area under curve (AUC) of 0.854 (for PRDX3) and 0.825 (for NF-${\kappa}B$) with sensitivity of 86.3% and 84.4% and specificity of 75.8% and 75.4% respectively, were found compared to AUC of alpha-fetoprotein (AFP) (0.65) with sensitivity of 72.4% and specificity of 64.3%. Conclusions: NF-${\kappa}B$ and PRDX3 may serve as early and sensitive biomarkers for early detection of HCC facilitating improved management. The role of nuclear factor kappa B (NF-${\kappa}B$) as a target for treatment of liver fibrosis and HCC must be widely evaluated.

Cadmium but not Mercury Suppresses NF-$\kappa$B Activation and COX-2 Expression Induced by Toll-like Receptor 2 and 4 Agonists

  • Ahn, Sang-Il;Park, Seul-Ki;Lee, Mi-Young;Youn, Hyung-Sun
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.2
    • /
    • pp.141-146
    • /
    • 2009
  • Toll-like receptors (TLRs) induce innate immune responses by recognizing conserved microbial structural molecules. All TLR signaling pathways culminate in the activation of nuclear factor kappa-B (NF-$\kappa$B) leading to the induction of inflammatory gene products such as cyclooxygenase-2 (COX-2). Deregulated activation of TLRs can lead to the development of severe systemic inflammation. Divalent heavy metals, cadmium and mercury, have been used for thousands of years. While cadmium and mercury are clearly toxic to most mammalian organ systems, especially the immune system, their underlying toxic mechanism(s) remain unclear. Here, we report biochemical evidence that cadmium, but not mercury, inhibits NF-$\kappa$B activation and COX-2 expression induced by TLR2 or TLR4 agonists, while cadmium does not inhibit NF-$\kappa$B activation induced by the downstream signaling component of TLRs, MyD88. Thus, the target of cadmium to inhibit NF-$\kappa$B activation may be upstream of MyD88 including TLRs themselves, or events leading to TLR activation by agonists.

Inhibition of $NF-{\kappa}B$ Activation Increases Oxygen-Glucose Deprivation-Induced Cerebral Endothelial Cell Death

  • Lee, Jin-U;Kim, Chul-Hoon;Shim, Kyu-Dae;Ahn, Young-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.2
    • /
    • pp.65-71
    • /
    • 2003
  • Increasing evidences suggest that ischemia-induced vascular damage is an integral step in the cascade of the cellular and molecular events initiated by cerebral ischemia. In the present study, employing a mouse brain endothelioma-derived cell line, bEnd.3, and oxygen-glucose deprivation (OGD) as an in vitro stroke model, the role of nuclear factor kappa B (NF-${\kappa}B$) activation during ischemic injury was investigated. OGD was found to activate NF-${\kappa}B$ and to induce bEnd.3 cell death in a time-dependent manner. OGD phosphorylated neither 32 Ser nor 42 Tyr of $I{\kappa}B{\alpha}$. OGD did not change the amount of $I{\kappa}B{\alpha}$. The extents of OGD-induced cell death after 8 h, 10 h, 12 h and 14 h of OGD were 10%, 35%, 60% and 85%, respectively. Reperfusion following OGD did not cause additional cell death, indicating no reperfusion injury after ischemic insult in cerebral endothelial cells. Three known as NF-${\kappa}B$ inhibitors, including pyrrolidine dithiocarbamate (PDTC) plus zinc, aspirin and caffeic acid phenethyl ester (CAPE), inhibited OGD-induced NF-${\kappa}B$ activation and increased OGD-induced bEnd.3 cell death in a dose dependent manner. There were no changes in the protein levels of bcl-2, bax and p53 which are modulated by NF-${\kappa}B$ activity. These results suggest that NF-${\kappa}B$ activation might be a protective mechanism for OGD-induced cell death in bEnd.3.

Synthesis of 7-Aryloxy-chroman-2-carboxamides and their Evaluation of NF-${\kappa}B$ Inhibitory Activities (7-아릴옥시-크로만-2-카복사마이드 유도체들의 합성 및 NF-${\kappa}B$ 저해활성)

  • Choi, Eun-Hwa;Kwak, Jae-Hwan;Kim, Young-Soo;Lee, Hee-Soon;Jung, Jae-Kyung
    • YAKHAK HOEJI
    • /
    • v.54 no.3
    • /
    • pp.200-204
    • /
    • 2010
  • Nuclear factor-${\kappa}B$ (NF-${\kappa}B$) plays critical roles in physiological and pathological processes such as immune function, cellular growth, homeostasis, apoptosis, and inflammation. As part of our ongoing efforts to develop novel NF-${\kappa}B$ inhibitory agents, we reported that KL-1156 (6-hydroxy-7-methoxychroman-2-carboxylic acid phenylamide) exhibited potent inhibitory activity of NF-${\kappa}B$. For further structure-activity relationship, a series of 7-aryloxy-chroman-2-carboxylamide derivatives were synthesized to explore their inhibitory activities of NF-${\kappa}B$.

NF-${\kappa}B$ Activation by Compounds Found in Platycodon grandiflorum Extract

  • Hong, Sung-Won;Yong, Yeon-Joong;Kang, Kyung-Rai;Shin, Soon-Young;Lee, Young-Han;Lim, Yoong-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.6
    • /
    • pp.556-559
    • /
    • 2009
  • Compounds extracted from Platycodon grandiflorum were evaluated for an activation effect on nuclear factor-kappa B (NF-${\kappa}B$). In its active state, NF-${\kappa}B$ turns on the expression of genes related to cell proliferation or death. NF-${\kappa}B$ activators promote growth of neuron cells and can be used to control neurodegenerative diseases. The biological activity of P. grandiflorum extracts toward NF-${\kappa}B$ had not yet been studied. Although the biological activity of several compounds extracted from P. grandiflorum was evaluated, only three exhibited any significant activation effect on NF-${\kappa}B$.

Interference of Fisetin with Targets of the Nuclear Factor-κB Signal Transduction Pathway Activated by Epstein-Barr Virus Encoded Latent Membrane Protein 1

  • Li, Rong;Liang, Hong-Ying;Li, Ming-Yong;Lin, Chun-Yan;Shi, Meng-Jie;Zhang, Xiu-Juan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.22
    • /
    • pp.9835-9839
    • /
    • 2014
  • Fisetin is an effective compound extracted from lacquer which has been used in the treatment of various diseases. Preliminary data indicate that it also exerts specific anti-cancer effects. However, the manner in which fisetin regulates cancer growth remains unknown. In this study, we elucidated interference of fisetin with targets of the nuclear factor ${\kappa}B$ signal transduction pathway activated by Epstein-Barr virus encoding latent membrane protein 1 (LMP1)in nasopharyngeal carcinoma (NPC) cells, Results showed that fisetin inhibited the survival rate of CNE-LMP1 cells and NF-${\kappa}B$ activation caused by LMP1. Fisetin also suppressed nuclear translocation of NF-${\kappa}B$ (p65) and $I{\kappa}B{\alpha}$ phosphorylation, while inhibiting CyclinD1, all key targets of the NF-${\kappa}B$ signal transduction pathway. It was suggested that interference effects of fisetin with signal transduction activated by LMP1 encoded by the Epstein-Barr virus may play an important role in its anticancer potential.

ent-Kaurane Diterpenoids from Croton tonkinensis Inhibit LPS-induced Transcription Factor NF-${\kappa}{B}$ Activation and NO Production

  • Giang, Phan-Minh;Jin, Hui-Zi;Lee, Jung-Joon
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.120.1-120.1
    • /
    • 2003
  • Nuclear factor-${\kappa}{B}$ (NF-${\kappa}{B}$) belongs to a group of homodimers and heterodimers of Rel/NF-${\kappa}{B}$ proteins that bind to DNA target sites, where they directly regulate gene transcription. The activation of NF-${\kappa}{B}$ has been shown to mediate inflammation and suppress apoptosis. Activated NF-${\kappa}{B}$ has been found n various inflammatory diseases such as rheumatoid arthritis, Atherosclerosis, asthma, nflammatory bowel disease, and Helicobacter pylori-associated gastritis and associated with cancer, cachexia, diabetes, euthyroid sick syndrome, and AIDS. (omitted)

  • PDF

Atopic Dermatitis-Related Inflammation in Macrophages and Keratinocytes: The Inhibitory Effects of Bee Venom

  • Kim, Deok-Hyun;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.36 no.2
    • /
    • pp.80-87
    • /
    • 2019
  • Background: This study investigated the anti-inflammatory effects of bee venom (BV) through the inhibition of nuclear factor kappa beta ($NF-{\kappa}B$) expression in macrophages and keratinocytes. Methods: Cell viability assays were performed to investigate the cytotoxicity of BV in activated macrophages [lipopolysaccharide (LPS)] and keratinocytes [interferon-gamma/tumor necrosis factor-alpha ($IFN-{\gamma}/TNF-{\alpha}$)]. A luciferase assay was performed to investigate the cellular expression of $NF-{\kappa}B$ in relation to BV dose. The expression of $NF-{\kappa}B$ inhibitors ($p-I{\kappa}B{\alpha}$, $I{\kappa}B{\alpha}$, and p50 and p65) were determined by Western Blot analysis, and the electromobility shift assay. A nitrite quantification assay was performed to investigate the effect of BV, and $NF-{\kappa}B$ inhibitor on nitric oxide (NO) production in macrophages. In addition, Western Blot analysis was performed to investigate the effect of BV on the expression of mitogen-activated protein kinases (MAPK) in activated macrophages and keratinocytes. Results: BV was not cytotoxic to activated macrophages and keratinocytes. Transcriptional activity of $NF-{\kappa}B$, and p50, p65, and $p-I{\kappa}B{\alpha}$ expression was reduced by treatment with BV in activated macrophages and keratinocytes. Treatment with BV and an $NF-{\kappa}B$ inhibitor, reduced the production of NO by activated macrophages, and also reduced $NF-{\kappa}B$ transcriptional activity in activated keratinocytes (compared with either BV, or $NF-{\kappa}B$ inhibitor treatment). Furthermore, BV decreased p38, p-p38, JNK, and p-JNK expression in LPS-activated macrophages and $IFN-{\gamma}/TNF-{\alpha}$-activated keratinocytes. Conclusion: BV blocked the signaling pathway of $NF-{\kappa}B$, which plays an important role in the inflammatory response in macrophages and keratinocytes. These findings provided the possibility of BV in the treatment of atopic dermatitis.

Anti-inflammatory Effects of the Methanol Extract of Polytrichum Commune via NF-κB Inactivation in RAW 264.7 Macrophage Cells

  • Cho, Woong;Park, Seung-Jae;Shin, Ji-Sun;Noh, Young-Su;Cho, Eu-Jin;Nam, Jung-Hwan;Lee, Kyung-Tae
    • Biomolecules & Therapeutics
    • /
    • v.16 no.4
    • /
    • pp.385-393
    • /
    • 2008
  • As an attempt to search for bioactive natural products exerting anti-inflammatory activity, we evaluated the effects of the methanol extract of Polytrichum commune Hedw (PCM) (Polytrichaceae) on lipopolysaccharide (LPS)-induced nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$) and pro-inflammatory cytokines release in murine macrophage cell line RAW 264.7. PCM potently inhibits the production of NO, $PGE_2$, tumor necrosis factor (TNF)-$\alpha$ and interleukin (IL)-6. Consistent with these results, PCM also concentration-dependently inhibited LPS-induced inducible NO synthase (iNOS) and cyclooxygase (COX)-2 at the protein levels, and iNOS, COX-2, TNF-$\alpha$ and IL-6 at the mRNA levels without an appreciable cytotoxic effect on RAW 264.7 macrophag cells. Furthermore, PCM inhibited LPS-induced nuclear factor-kappa B (NF-$\kappa$B) activation as determined by NF-$\kappa$B reporter gene assay, and this inhibition was associated with a decrease in the nuclear translocation of p65 and p50 NF-$\kappa$B. Taken together, these results suggest that PCM may play an anti-inflammatory role in LPS-stimulated RAW 264.7 macrophages through the inhibitory regulation of iNOS, COX-2, TNF-$\alpha$ and IL-6 via NF-$\kappa$B inactivation.