• Title/Summary/Keyword: Nuclear data

Search Result 3,720, Processing Time 0.028 seconds

Validation of RELAP5 MOD3.3 code for Hybrid-SIT against SET and IET experimental data

  • Yoon, Ho Joon;Al Naqbi, Waleed;Al-Yahia, Omar S.;Jo, Daeseong
    • Nuclear Engineering and Technology
    • /
    • 제52권9호
    • /
    • pp.1926-1938
    • /
    • 2020
  • We validated the performance of RELAP MOD3.3 code regarding the hybrid SIT with available experimental data. The concept of the hybrid SIT is to connect the pressurizer to SIT to utilize the water inside SIT in the case of SBO or SB-LOCA combined with TLOFW. We investigated how well RELAP5 code predicts the physical phenomena in terms of the equilibrium time, stratification, condensation against Separate Effect Test (SET) data. We also conducted the validation of RELAP5 code against Integrated Effect Test (IET) experimental data produced by the ATLAS facility. We followed conventional approach for code validation of IET data, which are pre-test and post-test calculation. RELAP5 code shows substantial difference with changing number of nodes. The increase of the number of nodes tends to reduce the condensation rate at the interface between liquid and vapor inside the hybrid SIT. The environmental heat loss also contributes to the large discrepancy between the simulation results of RELAP5 and the experimental data.

Use of big data analysis to investigate the relationship between natural radiation dose rates and cancer incidences in Republic of Korea

  • Joo, Han Young;Kim, Jae Wook;Moon, Joo Hyun
    • Nuclear Engineering and Technology
    • /
    • 제52권8호
    • /
    • pp.1798-1806
    • /
    • 2020
  • In this study, we investigated whether there is a significant relationship between the natural radiation dose rate and the cancer incidences in Korea by using a big data analysis. The natural dose rate data for this analysis were the measurement data obtained from the 171 monitoring posts of the 113 administrative districts in Korea over the 10 years from 2007 to 2016. The relative cancer incidences for this analysis were the difference in the cancer patients per hundred thousand people year-on-year in the administrative districts with the five highest and the five lowest natural gamma dose rates each year over the same period. To analyze the correlation between the two variables, Spearman's rank correlation coefficient between the two rates was derived using R, a well-known big data analysis tool. The analysis showed that Spearman's rank correlation coefficient was more than 0.05 and that the correlation between the two variables was not statistically significant.

SEMISUPERVISED CLASSIFICATION FOR FAULT DIAGNOSIS IN NUCLEAR POWER PLANTS

  • MA, JIANPING;JIANG, JIN
    • Nuclear Engineering and Technology
    • /
    • 제47권2호
    • /
    • pp.176-186
    • /
    • 2015
  • Pattern classifications have become important tools for fault diagnosis in nuclear power plants (NPP). However, it is often difficult to obtain training data under fault conditions to train a supervised classification model. By contrast, normal plant operating data can be easily made available through increased deployment of supervisory, control, and data acquisition systems. Such data can also be used to train classification models to improve the performance of fault diagnosis scheme. In this paper, a fault diagnosis scheme based on semisupervised classification (SSC) scheme is developed. In this scheme, new measurements collected from the plant are integrated with data observed under fault conditions to train the SSC models. The trained models are subsequently applied to new measurements for fault diagnosis. In comparison with supervised classifiers, the proposed scheme requires significantly fewer data collected under fault conditions to train the classifier. The developed scheme has been validated using different fault scenarios on a desktop NPP simulator as well as on a physical NPP simulator using a graph-based SSC algorithm. All the considered faults have been successfully diagnosed. The results have demonstrated that SSC is a promising tool for fault diagnosis in NPPs.

Statistical analysis of S-N type environmental fatigue data of Ni-base alloy welds using weibull distribution

  • Jae Phil Park;Junhyuk Ham;Subhasish Mohanty;Dayu Fajrul Falaakh;Ji Hyun Kim;Chi Bum Bahn
    • Nuclear Engineering and Technology
    • /
    • 제55권5호
    • /
    • pp.1924-1934
    • /
    • 2023
  • In this study, the probabilistic fatigue life model for Ni-base alloys was developed based on the Weibull distribution using statistical analysis of fatigue data reported in NUREG/CR-6909 and the new fatigue data of Alloy 52M/152 and 82/182. The developed Weibull model can consider right-censored data (i.e., non-failed data) and quantify the improved safety (or reliability) based on the level of failure probability. The overall margin in the current fatigue design limit model (ASME design curve + NUREG/CR-6909 Fen model) is similar to that of the Weibull model with a cumulative failure probability of approximately 2.5%. The margin in the current fatigue design limit model demonstrated inconsistencies for the Ni-base alloy weld data, whereas the Weibull model showed a consistent margin. Therefore, the Weibull model can systematically mitigate the excessive safety margin.

Round robin analysis of vessel failure probabilities for PTS events in Korea

  • Jhung, Myung Jo;Oh, Chang-Sik;Choi, Youngin;Kang, Sung-Sik;Kim, Maan-Won;Kim, Tae-Hyeon;Kim, Jong-Min;Kim, Min Chul;Lee, Bong Sang;Kim, Jong-Min;Kim, Kyuwan
    • Nuclear Engineering and Technology
    • /
    • 제52권8호
    • /
    • pp.1871-1880
    • /
    • 2020
  • Round robin analyses for vessel failure probabilities due to PTS events are proposed for plant-specific analyses of all types of reactors developed in Korea. Four organizations, that are responsible for regulation, operation, research and design of the nuclear power plant in Korea, participated in the round robin analysis. The vessel failure probabilities from the probabilistic fracture mechanics analyses are calculated to assure the structural integrity of the reactor pressure vessel during transients that are expected to initiate PTS events. The failure probabilities due to various parameters are compared with each other. All results are obtained based on several assumptions about material properties, flaw distribution data, and transient data such as pressure, temperature, and heat transfer coefficient. The realistic input data can be used to obtain more realistic failure probabilities. The various results presented in this study will be helpful not only for benchmark calculations, result comparisons, and verification of PFM codes developed but also as a contribution to knowledge management for the future generation.

The adsorption-desorption behavior of strontium ions with an impregnated resin containing di (2-ethylhexyl) phosphoric acid in aqueous solutions

  • Kalal, Hossein Sid;Khanchi, Ali Reza;Nejatlabbaf, Mojtaba;Almasian, Mohammad Reza;Saberyan, Kamal;Taghiof, Mohammad
    • Advances in environmental research
    • /
    • 제6권4호
    • /
    • pp.301-315
    • /
    • 2017
  • An Amberlite XAD-4 resin impregnated with di(2-ethylhexyl)phosphoric acid was prepared and its adsorption-desorption behaviors with Sr(II) ions under various conditions was examined. The resin was characterized by fourier transform infrared and thermal analysis techniques. The effects contact time, temperature, pH, interfering ions and eluants were studied. Results showed that adsorption of Sr (II) well fitted with pseudo-second-order kinetic model. The equilibrium adsorption data of Sr (II) on the impregnated resin were analyzed by Jossens, Weber-van Vliet, Redlich-Peterson and Fritz-Schlunder models to find out desirable equilibrium condition. Among them, the Fritz-Schlunder model best fitted to the experimental data. The maximum sorption capacity of impregnated resin amounted to 0.45 mg/ g at pH 8.0 and $20^{\circ}C$.

Sentiment analysis of nuclear energy-related articles and their comments on a portal site in Rep. of Korea in 2010-2019

  • Jeong, So Yun;Kim, Jae Wook;Kim, Young Seo;Joo, Han Young;Moon, Joo Hyun
    • Nuclear Engineering and Technology
    • /
    • 제53권3호
    • /
    • pp.1013-1019
    • /
    • 2021
  • This paper reviewed the temporal changes in the public opinions on nuclear energy in Korea with a big data analysis of nuclear energy-related articles and their comments posted on the portal site NAVER. All articles that included at least one of "nuclear energy," "nuclear power plant (NPP)," "nuclear power phase-out," or "anti-nuclear" in their titles or main text were extracted from those posted on NAVER in January 2010-December 2019. First, we performed annual word frequency analysis to identify what words had appeared most frequently in the articles. For that period, the most frequent words were "NPP," "nuclear energy," and "energy." In addition, "safety" has remained in the upper ranks since the Fukushima NPP accident. Then, we performed sentiment analysis of the pre-processed articles. The sentiment analysis showed that positive-tone articles have been reported more frequently than negativetone over the entire analysis period. Last, we performed sentiment analysis of the comments on the articles to examine the public's intention regarding nuclear issues. The analysis showed that the number of negative comments to articles each month-irrespective of positive or negative tone-was always larger than that of positive comments over the entire analysis period.

데이터 기반 설계기법 도입에 따른 원전 건설관리체계 개선방향 고찰 (A Study on Improvement of Nuclear Power Plant Construction System According to Data-centric Design Technique Introduction in Korea)

  • 임병기;변수진
    • 에너지공학
    • /
    • 제25권1호
    • /
    • pp.108-112
    • /
    • 2016
  • 본 연구에서는 국내 원전 산업의 데이터 기반 설계기법 전환을 위하여 관련 문헌을 조사하고 데이터 기반 설계기술에 대한 개념을 정립하였다. 또한 국내외 원전 산업 기술동향 분석을 통해 데이터 기반 설계통합시스템 Framework 개발 및 관련 주요기능을 도출하였다. 국내 원전 건설 시 최신 설계통합시스템 적용에 따라 이를 활용하는 제작사, 시공사 및 발주자의 업무수행 방식 또한 전면적인 전환을 위한 원전 건설단계별 업무프로세스 개선방향을 도출하였다. 이는 기자재 3D 모델 통합, 3D CAD 모델생성, 시공검토 Simulation 등 모델기반 현장설계 수행이 가능하며, 현장설계에서 발생하는 모든 설계도면 및 관련 정보가 데이터 기반 3D CAD 시스템으로 통합관리가 가능하여 이를 운영단계에 이관하여 O&M 단계에서 데이터 기반 운영체계가 가능함에 따라 발전소 안전 운영에 향상이 기대된다.

Experimental Study and Correlation Development of Critical Heat Flux under Low Pressure and Low Flow Condition

  • Kim, Hong-Chae;Baek, Won-Pil;Kim, Han-Kon;Chang, Soon-Heung
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 춘계학술발표회논문집(1)
    • /
    • pp.356-361
    • /
    • 1997
  • To investigate parametric effect on CHF and to get CHF data, experimental study has been performed with vertical round tubes under the condition of low pressure and low flow (LPLF). Test sections are made of Inconel-625 tube and have the geometry of 8 and 10 mm in diameter, and 0.5 and 1.0 m in heated length. All experiments have been conducted at the pressure of under 9 bar, the mass flux of under 250 kg/$m^2$ and the inlet subcooling of 350 and 450 kJ/kg, for stable upward flow with water as a coolant. Flow regime analysis has been performed for obtained CHF data with Mishima's flow regime map, which reveals that most of the CHF occur in the annular-mist flow regime. General parametric trends of the collected CHF data are consistent with those of previous studies. However, for the pressure effect on CHF, two different are observed; For relatively high mass flux, CHF increases with pressure and far lower mass flux, CHF decrease with pressure. Using modern data regression tool, ACE algorithm, two new CHF correlations for LPLF condition are developed based on local condition and inlet condition, respectively. The developed CHF correlations show better prediction accuracy compared with existing CHF prediction methods.

  • PDF