• Title/Summary/Keyword: Nuclear Power Plant decommissioning

Search Result 118, Processing Time 0.025 seconds

An Analysis on the DCGL setting Method of the United States for Demonstrating Nuclear Power Plants Site Release Criteria (국내 원전 부지 해제 기준 준수 입증을 위한 미국의 유도농도기준(DCGL) 설정 방법에 대한 분석)

  • Jeon, Yeo Ryeong;Park, Sang June;Ahn, Seokyoung;Lee, Jong Seh;Kim, Yongmin
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • The U.S. NRC establishes a radiological criteria with regard to restricted or unrestricted use of nuclear plant site after decommissioning in NUREG-1757. According to this, a nuclear plant site can be released in a restricted way or unrestricted way only if a licensee demonstrates that the dose criteria is fulfilled after the site decontamination and remediation. In order to prove compliance with the radiological criteria of site release, LTP(License Termination Plan) must include the site release criteria, site characterization, final survey plan with major radionuclides and DCGL(Derived Concentration Guideline Levels), etc. Based on the decommissioning case of Rancho Seco nuclear power plant in the United States, this paper analyzed a method of setting the DCGL that can be applied to Kori NPP Unit 1 which will be permanently disabled in 2017.

A Study on the Assessment of Source-term for PWR Primary System Using MonteCarlo Code (MonteCarlo 코드를 이용한 PWR 일차 계통 선원항 평가에 관한 연구)

  • Song, Jong Soon;Lee, Sang Heon;Shin, Seung Su
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.3
    • /
    • pp.331-337
    • /
    • 2018
  • The decommissioning of nuclear power plants is generally executed in five steps, including preparation, decontamination, cutting/demolition, waste disposal and environmental restoration. So, for efficient decommissioning of nuclear power plants, worker safety, effects compared to cost, minimization of waste, possibility of reuse, etc., shall be considered. Worker safety and measurement technology shall be secured to exert optimal efficiency of nuclear power plant decommissioning work, for which accurate measurement technology for systems and devices is necessary. Typical In-Situ methods for decommissioning of nuclear plants are CZT, Gamma Camera and ISOCS. This study used ISOCS, which can be applied during the decommissioning of a nuclear power plant site without collecting representative samples, to take measurements of the S/G Water Chamber. To validate the measurement values, Microshield and the GEANT4 code was used as the actual method were used for modeling, respectively. The comparison showed a difference of $1.0{\times}10^1Bq$, which indicates that it will be possible to reduce errors due to the influence of radiation in the natural environment and the precision of modeling. Based on the research results of this paper, accuracy and reliability of measurement values will be analyzed and the applicability of the direct measurement method during the decommissioning of NPPs will be assessed.

Review of the Acceptance Criteria of Very Low Level Radioactive Waste for the Disposal of Decommissioning Waste (극저준위 해체폐기물 처분을 위한 방사성폐기물 인수기준 분석)

  • Kim, Beomin;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.2
    • /
    • pp.165-169
    • /
    • 2014
  • In order to use the nuclear energy as the sustainable energy source, the safe and efficient management of radioactive wastes generated from the nuclear fuel cycle including NPP decommissioning is one of the most important factors. The establishment of acceptance criteria for very low level radioactive wastes generated from decommissioning of nuclear power plant in a large quantity is seemed to play a key role for developing a radioactive wastes disposal strategy as well as NPP decommissioning strategy. In this thesis, we want to review the acceptance criteria of low-and-intermediate-level radioactive wastes in this country through the analysis of other country's acceptance criteria.

Performance assessment of HEPA filter to reduce internal dose against radioactive aerosol in nuclear decommissioning

  • Hee Kwon Ku;Min-Ho Lee;Hyunjin Boo;Geun-Dong Song;Deokhee Lee;Kaphyun Yoo;Byung Gi Park
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1830-1837
    • /
    • 2023
  • The thermal cutting of contaminated or activated metals during decommissioning nuclear power plants inevitably results in the release of radioactive aerosol. Since radioactive aerosols are pernicious particles that contribute to the internal dose of workers, air conditioning units with a HEPA filter are used to remove radioactive aerosols. However, a HEPA filter cannot be used permanently. This study evaluates the efficiency and lifetime of filters in actual metal cutting condition using a plasma arc cutter and a high-resolution aerosol detector. The number concentration and size distribution of aerosols from 6 nm to 10 ㎛ were measured on both the upstream and downstream sides of the filter. The total aerosol removal efficiency of HEPA filter satisfies the standard of removing at least 99.97% of 0.3 ㎛ airborne particles, even if the pressure drop increases due to dust feeding load. The pressure drop and particle size removal efficiency at 0.3 ㎛ of the HEPA filter were found to increase with repeated cutting experiments. By contrast, the efficiency of used HEPA filter reduced in removing nano-sized aerosols by up to 79.26%. Altogether, these results can be used to determine the performance guidance and replacement frequency of HEPA filters used in nuclear power plants.

Study on Dose Rate on the Surface of Cask Packed with Activated Cut-off Pieces from Decommissioned Nuclear Power Plant

  • Park, Kwang Soo;Kim, Hae Woong;Sohn, Hee Dong;Kim, Nam Kyun;Lee, Chung Kyu;Lee, Yun;Lee, Ji Hoon;Hwang, Young Hwan;Lee, Mi Hyun;Lee, Dong Kyu;Jung, Duk Woon
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.4
    • /
    • pp.178-186
    • /
    • 2020
  • Background: Reactor pressure vessel (RV) with internals (RVI) are activated structures by neutron irradiation and volume contaminated wastes. Thus, to develop safe and optimized disposal plan for them at a disposal site, it is important to perform exact activation calculation and evaluate the dose rate on the surface of casks which contain cut-off pieces. Materials and Methods: RV and RVI are subjected to neutron activation calculation via Monte Carlo methodology with MCNP6 and ORIGEN-S program-neutron flux, isotopic specific activity, and gamma spectrum calculation on each component of RV and RVI, and dose rate evaluation with MCNP6. Results and Discussion: Through neutron activation analysis, dose rate is evaluated for the casks containing cut-off pieces produced from decommissioned RV and RVI. For RV cut-off ones, the highest value of dose rate on the surface of cask is 6.97 × 10-1 mSv/hr and 2 m from it is 3.03 × 10-2 mSv/hr. For RVI cut-off ones, on the surface of it is 0.166 × 10-1 mSv/hr and 2 m from it is 1.04 × 10-1 mSv/hr. Dose rates for various RV and RVI cut-off pieces distributed lower than the limit except the one of 2 m from the cask surface of RVI. It needs to adjust contents in cask which carries highly radioactive components in order to decrease thickness of cask. Conclusion: Two types of casks are considered in this paper: box type for very-low-level waste (VLLW) as well as low-level waste (LLW) and cylinder type for intermediate-level waste (ILW). The results will contribute to the development of optimal loading plans for RV and RVI cut-off pieces during the decommissioning of nuclear power plant that can be used to prepare radioactive waste disposal plans for the different types of wastes-ILW, LLW, and VLLW.