• Title/Summary/Keyword: Nuclear Fusion

Search Result 583, Processing Time 0.023 seconds

Optimum Radius Size between Cylindrical Ion Trap and Quadrupole Ion Trap

  • Chaharborj, Sarkhosh Seddighi;Kiai, Seyyed Mahmod Sadat;Arifin, Norihan Md;Gheisari, Yousof
    • Mass Spectrometry Letters
    • /
    • v.6 no.3
    • /
    • pp.59-64
    • /
    • 2015
  • Quadrupole ion trap mass analyzer with a simplified geometry, namely, the cylindrical ion trap (CIT), has been shown to be well-suited using in miniature mass spectrometry and even in mass spectrometer arrays. Computation of stability regions is of particular importance in designing and assembling an ion trap. However, solving CIT equations are rather more difficult and complex than QIT equations, so, analytical and matrix methods have been widely used to calculate the stability regions. In this article we present the results of numerical simulations of the physical properties and the fractional mass resolutions m/Δm of the confined ions in the first stability region was analyzed by the fifth order Runge-Kutta method (RKM5) at the optimum radius size for both ion traps. Because of similarity the both results, having determining the optimum radius, we can make much easier to design CIT. Also, the simulated results has been performed a high precision in the resolution of trapped ions at the optimum radius size.

Mechanisms of Uniparental Mitochondrial DNA Inheritance in Cryptococcus neoformans

  • Gyawali, Rachana;Lin, Xiaorong
    • Mycobiology
    • /
    • v.39 no.4
    • /
    • pp.235-242
    • /
    • 2011
  • In contrast to the nuclear genome, the mitochondrial genome does not follow Mendelian laws of inheritance. The nuclear genome of meiotic progeny comes from the recombination of both parental genomes, whereas the meiotic progeny could inherit mitochondria from one, the other, or both parents. In fact, one fascinating phenomenon is that mitochondrial DNA in the majority of eukaryotes is inherited from only one particular parent. Typically, such unidirectional and uniparental inheritance of mitochondrial DNA can be explained by the size of the gametes involved in mating, with the larger gamete contributing towards mitochondrial DNA inheritance. However, in the human fungal pathogen Cryptococcus neoformans, bisexual mating involves the fusion of two isogamous cells of mating type (MAT) a and MAT${\alpha}$, yet the mitochondrial DNA is inherited predominantly from the MATa parent. Although the exact mechanism underlying such uniparental mitochondrial inheritance in this fungus is still unclear, various hypotheses have been proposed. Elucidating the mechanism of mitochondrial inheritance in this clinically important and genetically amenable eukaryotic microbe will yield insights into general mechanisms that are likely conserved in higher eukaryotes. In this review, we highlight studies on Cryptococcus mitochondrial inheritance and point out some important questions that need to be addressed in the future.

Ultrastructural Study of Programmed Cell Death of Tapetum In Panax ginseng (인삼 융단조직의 프로그램 세포사에 관한 미세구조적 연구)

  • Jeong, Byung-Kap
    • Journal of Life Science
    • /
    • v.19 no.8
    • /
    • pp.1016-1022
    • /
    • 2009
  • Tapetum is the tissue in which nutrients are supplied to the developing microspore in angiosperm anther. At tetrad stage of microspore, the tapetal cells show maximum development, but they began to be degenerated by apoptotic programmed cell death (PCD) after sporopollenin accumulation in the pollen wall. The initial step of PCD was observed as vacuolar fusion. After that, cytoplasmic condensation and nuclear fragmentation followed. Lipid droplets are degenerated at a relatively late stage of PCD, and orbicular bodies are the last remains in tapetal cells. The cell wall was relatively resistant against vacuolar enzymes in tapetal cells; it was considered the last structure remaining during programmed cell death of tapetum in ginseng anther.

DESIGN AND TEST RESULTS ON A 45-KV PULSED POWER MODULATOR FOR A 1.5-MW MAGNETRON APPLICATION OF KSTAR LHCD

  • Jang, Sung-Duck;Son, Yoon-Gyu;Oh, Jong-Seok;Bae, Young-Soon;Cho, Moo-Hyun;NamKung, Won
    • Nuclear Engineering and Technology
    • /
    • v.38 no.8
    • /
    • pp.785-792
    • /
    • 2006
  • The microwave heating system of KSTAR consists of ECH and LHCD. ECH and LHCD offer the benefits ofa reliable operation at the start of plasma formation and a non-inductive current drive durable steady state operation, respectively. LHCD uses a C-band microwave system with a frequency of 5 GHz. A pulsed power modulator with a power of 3.6 MW, $4{\mu}S$, 200 pps is required to drive the high-powered magnetron. The development of a pulse modulator with 1:4 pulse transformers is the focus of the research in this study. The peak power handling capability is 3.6 MW (45 kV, 90 A at load side with a pulse width of $4{\mu}S$). This paper describes the system overview and test results of the pulsed modulator. In particular, a simulated waveform is compared with the tested waveform.

The bubble problem of the plasma facing material: A finite element study

  • Kang, Xiaoyan;Cheng, Xiyue;Deng, Shuiquan
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2290-2298
    • /
    • 2020
  • The damage of first wall material in fusion reactor due to the bubbles caused by plasma has been studied by introducing a relation between the von Mises equivalent stress and the temperature field. The locations and shapes of the bubbles and the synergetic effect between the different bubbles under steady operational conditions have been studied using the finite elements method. Under transient heat loads, plastic deformations have been found to occur, and are significantly enhanced by the presence of the bubbles. The calculated concentration locations of von Mises equivalent stress are well consistent with the observed crack positions of the tungsten surface in many test experiments. Our simulations show that the damage of the bubbles is not severe enough to lead to catastrophic failure of the tungsten armor; however, it can cause local and gradual detachment of tungsten surface, which provides a reasonable explanation for the observed pits and rough or hairy surface morphology etc. Considering the transient heat loads, the lower bound of the security thickness of the tungsten tile is estimated to be greater than 2 mm.

A Study on Convergence Security of National Infrastructure (국가 인프라 시설의 융합보안 연구)

  • Lee, Daesung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.341-342
    • /
    • 2017
  • Control and development systems such as air traffic control systems, road traffic systems, and Korea Hydro &Nuclear Power are the infrastructure facilities of the country, and if the malicious hacking attacks proceed, the damage is beyond imagination. In fact, Korea Hydro & Nuclear Power has been subjected to a hacking attack, causing internal information to leak and causing social problems. In this study, we analyze the environment of the development control system and analyze the status of the convergence security research, which is a recent issue, and propose a strategy system for stabilizing various power generation control systems and propose countermeasures. We propose a method to normalize and integrate data types from various physical security systems (facilities), IT security systems, access control systems, to control the whole system through convergence authentication, and to detect risks through fusion control.

  • PDF

TOKAMAK REACTOR SYSTEM ANALYSIS CODE FOR THE CONCEPTUAL DEVELOPMENT OF DEMO REACTOR

  • Hong, Bong-Guen;Lee, Dong-Won;In, Sang-Ryul
    • Nuclear Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.87-92
    • /
    • 2008
  • Tokamak reactor system analysis code was developed at KAERI (Korea Atomic Energy Research Institute) and is used here for the conceptual development of a DEMO reactor. In the system analysis code, prospects of the development of plasma physics and the relevant technology are included in a simple mathematical model, i.e., the overall plant power balance equation and the plasma power balance equation. This system analysis code provides satisfactory results for developing the concept of a DEMO reactor and for identifying the necessary R&D areas, both in the physics and technology areas for the realization of the concept. With this system analysis code, the performance of a DEMO reactor with a limited extension of the plasma physics and technology adopted in the ITER design. The main requirements for the DEMO reactor were selected as: 1) demonstrate tritium self-sufficiency, 2) generate net electricity, and 3) achieve a steady-state operation. It was shown that to access an operational region for higher performance, the main restrictions are presented by the divertor heat load and the steady-state operation requirements.

Fuzzy-PID controller for motion control of CFETR multi-functional maintenance platform

  • Li, Dongyi;Lu, Kun;Cheng, Yong;Zhao, Wenlong;Yang, Songzhu;Zhang, Yu;Li, Junwei;Wu, Huapeng
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2251-2260
    • /
    • 2021
  • The motion control of the divertor maintenance system of the China Fusion Engineering Test Reactor (CFETR) was studied in this paper, in which CFETR Multi-Functional Maintenance Platform (MFMP) was simplified as a parallel robot for the convenience of theoretical analysis. In order to design the motion controller of parallel robot, the kinematics analysis of parallel robot was carried out. After that, the dynamic modeling of the hydraulic system was built. As the large variation of heavy payload on MFMP and highly nonlinearity of the system, A Fuzzy-PID controller was built for self-tuning PID controller parameters by using Fuzzy system to achieve better performance. In order to test the feasibility of the Fuzzy-PID controller, the simulation model of the system was built in Simulink. The results have showed that Fuzzy-PID controller can significantly reduce the angular error of the moving platform and provide the stable motion for transferring the divertor.

Rapid and massive throughput analysis of a constant volume high-pressure gas injection system

  • Ren, Xiaoli;Zhai, Jia;Wang, Jihong;Ren, Ge
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.908-914
    • /
    • 2019
  • Fusion power shutdown system (FPSS) is a safety system to stop plasma in case of accidents or incidents. The gas injection system for the FPSS presented in this work is designed to research the flow development in a closed system. As the efficiency of the system is a crucial property, plenty of experiments are executed to get optimum parameters. In this system, the flow is driven by the pressure difference between a gas storage tank and a vacuum vessel with a source pressure. The idea is based on a constant volume system without extra source gases to guarantee rapid response and high throughput. Among them, valves and gas species are studied because their properties could influence the velocity of the fluid field. Then source pressures and volumes are emphasized to investigate the volume flow rate of the injection. The source pressure has a considerable effect on the injected volume. From the data, proper parameters are extracted to achieve the best performance of the FPSS. Finally, experimental results are used as a quantitative benchmark for simulations which can add our understanding of the inner gas flow in the pipeline. In generally, there is a good consistency and the obtained correlations will be applied in further study and design for the FPSS.

A Study on Convergence Security of Power Generation Control System (발전 제어시스템의 융합보안 연구)

  • Lee, Daesung
    • Convergence Security Journal
    • /
    • v.18 no.5_1
    • /
    • pp.93-98
    • /
    • 2018
  • Korea Hydro & Nuclear Power Co., Ltd., Korea Electric Power Corporation, and Korea South-East Power Corporation are major infrastructure facilities of power supplying countries. If a malicious hacking attack occurs, the damage is beyond the imagination. In fact, Korea Hydro & Nuclear Power has been subjected to a hacking attack, causing internal information to leak and causing social big problems. In this paper, we propose a strategy and countermeasures for stabilization of various power generation control systems by analyzing the environment and the current status of power generation control system for convergence security research, which is becoming a hot issue. We propose a method to normalize and integrate data types from various physical security systems (facilities), IT security systems, access control systems, to control the whole system through convergence authentication, and to detect risks through fusion control.

  • PDF