• Title/Summary/Keyword: Nuclear Fuels Transport

Search Result 22, Processing Time 0.034 seconds

Analysis of Transportation and Handling system for Advanced spent fuel management process (사용후핵연료 차세대관리공정 운반취급계통 분석)

  • 홍동희;윤지섭;정재후;김영환;박병석;박기용;진재현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1438-1441
    • /
    • 2003
  • The project for "Development of Advanced Spent Fuel Management Technology" has a plan of a demonstration for the Advanced Management Process in the hot cell of IMEF. The Advanced Management Process are being developed for efficient and safe management of spent fuels. For the demonstration, several devices which are used to safely transport and handle nuclear materials without scattering have been derived by analyzing the Advanced Management Process, object nuclear material and modules of process equipment and performing graphical simulation of transportation/handling by computers. For verification, powder transportation vessel and handling device have been designed and manufactured. And several tests such as transporting, grappling, rotating the vessel have been performed. Also, the design requirements of transportation/handling equipment have been analyzed based on test results and process studies. The developed design requirements in this research will be used as the design data for the Advanced Management Process.

  • PDF

Structural Safety Analysis of Lifting Device for Spent Fuel Dual-purpose Metal Cask (사용후핵연료 금속겸용용기 인양장비의 구조 안전성 해석)

  • Moon, Tae-Chul;Baeg, Chang-Yeal;Yun, Si-Tae;Choi, Byung-Il;Jung, In-Su
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.4
    • /
    • pp.299-314
    • /
    • 2014
  • A lifting device is used to deal with transport cask for the transportation of spent fuels from nuclear power plants. This study performed theoretical analysis and numerical simulation to evaluate the structural integrity of the lifting device based on Nuclear Safety and Security Commission(NSSC) Notice No.2013-27 and US 10CFR Part 71 ${\S}71.45$. The results of theoretical analysis showed that the maximum stresses of all components were below the allowable values. This result confirmed that the lifting device was structurally safe during operation. The results of finite element analysis also showed that it was evaluated to satisfy the design criteria bothyielding and ultimate condition. All components have been shown to ensure the structural safety due to sufficient safety margins. In other words, the safety factor was 3 or more for the yielding condition and was 5 or more for the ultimate condition.

A Probabilistic Safety Assessment of a Pyro-processed Waste Repository (A-KRS 처분 시스템 확률론적 안전성 평가)

  • Lee, Youn-Myoung;Jeong, Jongtae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.4
    • /
    • pp.263-272
    • /
    • 2012
  • A GoldSim template program for a safety assessment of a hybrid-typed repository system, called A-KRS, in which two kinds of pyro-processed radioactive wastes, low-level metal wastes and ceramic high-level wastes that arise from the pyro-processing of PWR nuclear spent fuels are disposed of, has been developed. This program is ready both for a deterministic and probabilistic total system performance assessment which is able to evaluate nuclide release from the repository and farther transport into the geosphere and biosphere under various normal, disruptive natural and manmade events, and scenarios. The A-KRS has been probabilistically assessed with 9 selected input parameters, each of which has its own statistical distribution for a normal release and transport scenario associated with nuclide release and transport in and around the repository. Probabilistic dose exposure rates to the farming exposure group have been evaluated. A sensitivity of 9 selected parameters to the result has also been investigated to see which parameter is more sensitive and important to the exposure rates.

Stress Intensity Factors for Axial Cracks in CANDU Reactor Pressure Tubes (CANDU형 원전 압력관에 존재하는 축방향 균열의 응력확대계수)

  • Lee, Kuk-Hee;Oh, Young-Jin;Park, Heung-Bae;Chung, Han-Sub;Chung, Ha-Joo;Kim, Yun-Jae
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.1
    • /
    • pp.17-26
    • /
    • 2011
  • CANDU reactor core is composed a few hundreds pressure tubes, which support and locate the nuclear fuels in the reactor. Each pressure tube provides pressure boundary and flow path of primary heat transport system in the core region. In order to guarantee the structural integrity of pressure tube flaws which can be found by in-service inspection, crack growth and fracture initiation assessment have to be performed. Stress intensity factors are important and basic information for structural integrity assessment of planar and laminar flaws (e. g. crack). This paper reviews and confirms the stress intensity factor of axial crack, proposed in CSA N285.8-05, which is an fitness-for-service evaluation code for pressure tubes in CANDU nuclear reactors. The stress intensity factors in CSA N285.8-05 were compared with stress intensity factors calculated by three methods (finite element results, API 579-1/ASME FFS-1 2007 Fitness-For-Service and ASME Boiler and Pressure Vessel Code Section XI). The effects of Poisson's ratio and anisotropic elastic modulus on stress intensity factors were also discussed.

Conceptual Study of Fusion-Fission Hybrid Reactor for Transmutation of a Nuclear Waste

  • Hong, B.G.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.670-670
    • /
    • 2013
  • The concept of a fusion-driven transmutation reactor based on LAR (Low Aspect Ratio) tokamak as a neutron source is studied based on ITER physics and technology. The radial build of transmutation reactor components are self-consistently determined by coupling the systems analysis with radiation transport analysis and an optimal configuration of a transmutation reactor for aspect ratio, A in the range of 1.5 to 2.0 is found. The performance of a transmutation reactor is investigated and shows that a transmutation reactor with a neutron source producing fusion power less than 150 MW can destroy the transuranic actinides contained in the spent fuels produced from more than two 1 GWe PWRs with production of the fission power being greater than 2 GW.

  • PDF

First-Principles Study on Thermodynamic Stability of UO2 with He Gas Incorporation via Alpha-Decay

  • Kwon, Choa;Lee, Kwanpyung;Han, Byungchan
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.368-371
    • /
    • 2019
  • Using first principles calculations we investigated the thermomechanical stability of spent nuclear fuels (SNF), especially how mechanical properties of $UO_2$, such as, bulk, shear and Young's moduli and Poisson's ratio vary through alpha-decay of U into Th with generation of He gas. Our results indicate that substitution of U by Th through alpha decay ($U_{1-x}Th_xO_2$) does not significantly affect the stability of the grain in a fuel matrix. In addition, we studied the transport properties of He in and boundaries of the $U_{1-x}Th_xO_2$ grain. Helium preferentially resides at the grain boundaries through diffusion. Our study can contribute to substantial reduction of environmentally risk and enhancement of our sustainability by safe control of radioactive materials.

A NOVEL APPROACH TO FIND OPTIMIZED NEUTRON ENERGY GROUP STRUCTURE IN MOX THERMAL LATTICES USING SWARM INTELLIGENCE

  • Akbari, M.;Khoshahval, F.;Minuchehr, A.;Zolfaghari, A.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.7
    • /
    • pp.951-960
    • /
    • 2013
  • Energy group structure has a significant effect on the results of multigroup transport calculations. It is known that $UO_2-PuO_2$ (MOX) is a recently developed fuel which consumes recycled plutonium. For such fuel which contains various resonant nuclides, the selection of energy group structure is more crucial comparing to the $UO_2$ fuels. In this paper, in order to improve the accuracy of the integral results in MOX thermal lattices calculated by WIMSD-5B code, a swarm intelligence method is employed to optimize the energy group structure of WIMS library. In this process, the NJOY code system is used to generate the 69 group cross sections of WIMS code for the specified energy structure. In addition, the multiplication factor and spectral indices are compared against the results of continuous energy MCNP-4C code for evaluating the energy group structure. Calculations performed in four different types of $H_2O$ moderated $UO_2-PuO_2$ (MOX) lattices show that the optimized energy structure obtains more accurate results in comparison with the WIMS original structure.

A Foreign Cases Study of the Deep Borehole Disposal System for High-Level Radioactive Waste (고준위 방사성폐기물 심부시추공 처분시스템 개발 해외사례 분석)

  • Lee, Jongyoul;Kim, Geonyoung;Bae, Daeseok;Kim, Kyeongsoo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.2
    • /
    • pp.121-133
    • /
    • 2014
  • If the spent fuels or the high-level radioactive wastes can be disposed of in the depth of 3~5 km and more stable rock formation, it has several advantages. For example, (1)significant fluid flow through basement rock is prevented, in part, by low permeability, poorly connected transport pathways, and (2)overburden self-sealing. (3)Deep fluids also resist vertical movement because they are density stratified and reducing conditions will sharply limit solubility of most dose-critical radionuclides at the depth. Finally, (4) high ionic strengths of deep fluids will prevent colloidal transport. Therefore, as an alternative disposal concept to the deep geological disposal concept(DGD), very deep borehole disposal(DBD) technology is under consideration in number of countries in terms of its outstanding safety and cost effectiveness. In this paper, for the preliminary applicability analyses of the DBD system for the spent fuels or high level wastes, the DBD concepts which have been developed by some countries according to the rapid advance in the development of drilling technology were reviewed. To do this, the general concept of DBD system was checked and the study cases of foreign countries were described and analyzed. These results will be used as an input for the analyses of applicability for DBD in Korea.

A Deterministic Safety Assessment of a Pyro-processed Waste Repository (A-KRS 처분 시스템 결정론적 안전성 평가)

  • Lee, Youn-Myoung;Jeong, Jongtae;Choi, Jongwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.3
    • /
    • pp.171-188
    • /
    • 2012
  • A GoldSim template program for a safety assessment of a hybrid-typed repository system, called "A-KRS," in which two kinds of pyro-processed radioactive wastes, low-level metal wastes and ceramic high-level wastes that arise from the pyro-processing of PWR nuclear spent fuels are disposed of, has been developed. This program is ready both for a deterministic and probabilistic total system performance assessment which is able to evaluate nuclide release from the repository and farther transport into the geosphere and biosphere under various normal, disruptive natural and manmade events, and scenarios. The A-KRS has been deterministically assessed with 5 various normal and abnormal scenarios associated with nuclide release and transport in and around the repository. Dose exposure rates to the farming exposure group have been evaluated in accordance with all the scenarios and then compared among other.

Development of Spent Nuclear Fuel Transportation Worker Exposure Scenario by Dry Storage Methods (건식 저장방식별 사용후핵연료 운반 작업자 피폭시나리오 개발)

  • Geon Woo Son;Hyeok Jae Kim;Shin Dong Lee;Min Woo Kwak;Kwang Pyo Kim
    • Journal of Radiation Industry
    • /
    • v.18 no.1
    • /
    • pp.43-52
    • /
    • 2024
  • Currently, there are no interim storage facilities and permanent disposal facilities in Korea, so all spent nuclear fuels are temporarily stored. However, the temporary storage facility is approaching saturation, and as a measure to this, the 2nd Basic Plan for the Management of High-Level Radioactive Waste presented an operation plan for dry interim storage facilities and dry temporary storage facilities on the NPP on-site. The dry storage can be operated in various ways, and to select the optimal dry storage method, the reduction of exposure for workers must be considered. Accordingly, it is necessary to develop a worker exposure scenario according to the dry storage method and evaluate and compare the radiological impact for each method. The purpose of this study is to develop an exposure scenario for workers transporting spent nuclear fuel by dry storage method. To this end, first, the operation procedure of the foreign commercial spent nuclear fuel dry storage system was analyzed based on the Final Safety Analysis Report (FSAR). 1) the concrete overpack-based system, 2) the metal overpack-based system, and 3) the vertical storage module-based system were selected for analysis. Factors were assumed that could affect the type of work (working distance, working hours, number of workers, etc.) during transportation work. Finally, the work type of the processes involved in transporting spent nuclear fuel by dry storage method was set, and an exposure scenario was developed accordingly. The concrete overpack method, the metal overpack method, and the vertical storage module method were classified into a total of 31, 9, and 23 processes, respectively. The work distance, work time, and number of workers for each process were set. The product of working hours and number of workers (Man-hour) was set high in the order of concrete overpack method, vertical storage module method, and metal overpack method, and short-range work (10 cm) was most often applied to the concrete overpack method. The results of this study are expected to be used as basic data for performing radiological comparisons of transport workers by dry storage method of spent nuclear fuel.