Browse > Article
http://dx.doi.org/10.9713/kcer.2019.57.3.368

First-Principles Study on Thermodynamic Stability of UO2 with He Gas Incorporation via Alpha-Decay  

Kwon, Choa (Department of Chemical and Biomolecular Engineering, Yonsei University)
Lee, Kwanpyung (Department of Chemical and Biomolecular Engineering, Yonsei University)
Han, Byungchan (Department of Chemical and Biomolecular Engineering, Yonsei University)
Publication Information
Korean Chemical Engineering Research / v.57, no.3, 2019 , pp. 368-371 More about this Journal
Abstract
Using first principles calculations we investigated the thermomechanical stability of spent nuclear fuels (SNF), especially how mechanical properties of $UO_2$, such as, bulk, shear and Young's moduli and Poisson's ratio vary through alpha-decay of U into Th with generation of He gas. Our results indicate that substitution of U by Th through alpha decay ($U_{1-x}Th_xO_2$) does not significantly affect the stability of the grain in a fuel matrix. In addition, we studied the transport properties of He in and boundaries of the $U_{1-x}Th_xO_2$ grain. Helium preferentially resides at the grain boundaries through diffusion. Our study can contribute to substantial reduction of environmentally risk and enhancement of our sustainability by safe control of radioactive materials.
Keywords
First-principles; Uranium dioxide; Alpha decay; Thermodynamic stability; Helium gas;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Thompson, A. E. and Wolverton, C., "First-principles Study of Noble gas Impurities and Defects in $UO_2$," Phys. Rev. B, 84(13), 134111(2011).   DOI
2 Lederer, C., Hollander, J. and Perlman, S., "Table of Isotopes 6th edn," Wiley, New York, 5-6(1968).
3 Olander, D. R., "Fundamental Aspects of Nuclear Reactor Fuel Elements," California Univ., Berkeley (USA). Dept. of Nuclear Engineering, 1976.
4 Ewing, R. C., "Long-term Storage of Spent Nuclear Fuel," Nat. Mater., 14(3), 252(2015).   DOI
5 Nerikar, P. V., Rudman, K., Desai, T. G., Byler, D., Unal, C., McClellan, K. J., Phillpot, S. R., Sinnott, S. B., Peralta, P., Uberuaga, B. P. and Stanek, C. R., "Grain Boundaries in Uranium Dioxide: Scanning Electron Microscopy Experiments and Atomistic Simulations," J. Am. Ceram. Soc., 94(6), 1893-1900(2011).   DOI
6 Kresse, G. and Furthmüller, J., "Efficiency of Ab-initio Total Energy Calculations for Metals and Semiconductors Using a Plane-wave Basis Set," Comput. Mater. Sci., 6(1), 15-50(1996).   DOI
7 Perdew, J. P., Burke, K. and Ernzerhof, M., "Generalized Gradient Approximation Made Simple," Phys. Rev. Lett., 77(18), 3865(1996).   DOI
8 Perdew, J. P. and Burke, K., "Comparison Shopping for a Gradient‐ corrected Density Functional," Int. J. Quantum. Chem., 57(3), 309-319(1996).   DOI
9 Blochl, P. E., "Projector Augmented-wave Method," Phys. Rev. B, 50(24), 17953(1994).   DOI
10 Brincat, N. A., Molinari, M., Parker, S. C., Allen, G. C. and Storr, M. T., "Computer Simulation of Defect Clusters in $UO_2$ and Their Dependence on Composition," J. Nucl. Mater., 456, 329-333(2015).   DOI
11 Yun, Y. S., Oppeneer, P. M., Kim, H. and Park, K., "Defect Energetics and Xe Diffusion in $UO_2$ and $ThO_2$," Acta Metall., 57(5), 1655-1659(2009).
12 Dorado, B., Freyss, M., Amadon, B., Bertolus, M., Jomard, G. and Garcia, P., "Advances in First-principles Modelling of Point Defects in $UO_2$: f electron Correlations and the Issue of Local Energy Minima," J. Phys. Condens. Matter., 25(33), 333201(2013).   DOI
13 Meredig, B., Thompson, A., Hansen, H. A., Wolverton, C. and Van de Walle, A., "Method for Locating Low-energy Solutions Within DFT+ U," Phys. Rev. B, 82(19), 195128(2010).   DOI
14 Idiri, M., Bihan, T. L., Heathman, S. and Rebizant, J., "Behavior of Actinide Dioxides Under Pressure: $UO_2$ and $ThO_2$," Phys. Rev. B, 70(1), 014113(2004).   DOI
15 Yun, Y., Eriksson, O. and Oppeneer, P. M., "First-principles Modeling of He-clusters in $UO_2$," J. Nucl. Mater., 385(1), 72-74(2009).   DOI
16 Munro, R. G., "Elastic Moduli Data for Polycrystalline Oxide Ceramics," NIST. No. NIST Interagency/Internal Report (NISTIR)- 6853(2002).
17 Sanati, M., Albers, R. C., Lookman, T. and Saxena, A., "Elastic Constants, Phonon Density of States, and Thermal Properties of $UO_2$," Phys. Rev. B, 84(1), 014116(2011).   DOI
18 Sisodia, P., Dhoble, A. and Verma, M., "Shear Moduli of Macroisotropic Cubic Polycrystalline Materials," Phys. Status. Solidi. B, 163(2), 345-354(1991).   DOI
19 Klein, C. A. and Cardinale, G. F., "Young's Modulus and Poisson's Ratio of CVD Diamond," Diam. Relat. Mater., 2(5-7), 918- 923(1993).   DOI
20 Kanchana, V., Vaitheeswaran, G., Svane, A. and Delin, A, "Firstprinciples Study of Elastic Properties of $CeO_2$, $ThO_2$ and $PoO_2$," J. Phys. Condens. Matter., 18(42), 9615(2006).   DOI
21 Ewing, R., Weber, R. W. and Clinard Jr., F., "Radiation Effects in Nuclear Waste Forms for High-level Radioactive Waste," Prog. Nucl. Energ., 29(2), 63-127(1995).   DOI
22 Jang, Bo Gyu, Seung Ill Hyun, Moo Hwan Kim, Massoud Kaviany, and Ji Hoon Shim, "Origin of f-orbital-bonding insensitivity to spin-orbit coupling in $UO_2$," EPL, 112(1), 17012(2015).   DOI
23 Fritz, I., "Elastic Properties of $UO_2$ at High Pressure," J. Appl. Phys., 47(10), 4353-4358(1976).   DOI
24 Macedo, P., Capps, W. and Wachtman Jr. J., "Elastic Constants of Single Crystal $ThO_2$ at 25 $^{\circ}C$," J. Am. Ceram. Soc., 47(12), 651-651(1964).   DOI
25 Hogselius, P., "Spent Nuclear Fuel Policies in Historical Perspective: An International Comparison," Energ. Policy, 37(1), 254-263(2009).   DOI
26 Bunn, M., Holdren, J. P., Fetter, S. and van Der Zwaan, B., "The Economics of Reprocessing Versus Direct Disposal of Spent Nuclear Fuel," Nucl. Technol., 150(3), 209-230(2005).   DOI
27 Gryaznov, D., Heifets, E. and Kotomin, E., "Ab Initio DFT+U Study of He Atom Incorporation into $UO_2$ Crystals," Phys. Chem. Chem. Phys., 11(33), 7241-7247(2009).   DOI
28 Yun, Y., Eriksson, O. and Oppeneer, P. M., "Theory of He Trapping, Diffusion and Clustering in $UO_2$," J. Nucl. Mater., 385(3), 510-516(2009).   DOI
29 Liu, X.-Y. and Andersson, D., "Molecular Dynamics Study of Fission Gas Bubble Nucleation in $UO_2$," J. Nucl. Mater., 462, 8- 14(2015).   DOI
30 Govers, K., Lemehov, S., Hou, M. and Verwerft, M., "Molecular Dynamics Simulation of Helium and Oxygen Diffusion in $UO_{2{\pm}x}$," J. Nucl. Mater., 395(1-3), 131-139(2009).   DOI
31 Dabrowski, Ludwik, and Marcin Szuta. "Diffusion of Helium in the Perfect and Non Perfect Uranium Dioxide Crystals and Their Local Structures," J. Alloys Compd., 615, 598-603(2014).   DOI
32 Liu, X.-Y. and Andersson, D., "Revisiting the Diffusion Mechanism of Helium in $UO_2$: A DFT+ U Study," J. Nucl. Mater., 498, 373-377(2018).   DOI