• 제목/요약/키워드: Nuclear Criticality Safety Analysis

검색결과 36건 처리시간 0.02초

Criticality analysis of pyrochemical reprocessing apparatuses for mixed uranium-plutonium nitride spent nuclear fuel using the MCU-FR and MCNP program codes

  • P.A. Kizub ;A.I. Blokhin ;P.A. Blokhin ;E.F. Mitenkova;N.A. Mosunova ;V.A. Kovrov ;A.V. Shishkin ;Yu.P. Zaikov ;O.R. Rakhmanova
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.1097-1104
    • /
    • 2023
  • A preliminary criticality analysis for novel pyrochemical apparatuses for the reprocessing of mixed uranium-plutonium nitride spent nuclear fuel from the BREST-OD-300 reactor was performed. High-temperature processing apparatuses, "metallization" electrolyzer, refinery remelting apparatus, refining electrolyzer, and "soft" chlorination apparatus are considered in this work. Computational models of apparatuses for two neutron radiation transport codes (MCU-FR and MCNP) were developed and calculations for criticality were completed using the Monte Carlo method. The criticality analysis was performed for different loads of fissile material into the apparatuses including overloading conditions. Various emergency situations were considered, in particular, those associated with water ingress into the chamber of the refinery remelting apparatus. It was revealed that for all the considered computational models nuclear safety rules are satisfied.

Validation of UNIST Monte Carlo code MCS for criticality safety calculations with burnup credit through MOX criticality benchmark problems

  • Ta, Duy Long;Hong, Ser Gi;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • 제53권1호
    • /
    • pp.19-29
    • /
    • 2021
  • This paper presents the validation of the MCS code for critical safety analysis with burnup credit for the spent fuel casks. The validation process in this work considers five critical benchmark problem sets, which consist of total 80 critical experiments having MOX fuels from the International Criticality Safety Benchmark Evaluation Project (ICSBEP). The similarity analysis with the use of sensitivity and uncertainty tool TSUNAMI in SCALE was used to determine the applicable benchmark experiments corresponding to each spent fuel cask model and then the Upper Safety Limits (USLs) except for the isotopic validation were evaluated following the guidance from NUREG/CR-6698. The validation process in this work was also performed with the MCNP6 for comparison with the results using MCS calculations. The results of this work showed the consistence between MCS and MCNP6 for the MOX fueled criticality benchmarks, thus proving the reliability of the MCS calculations.

핵임계 안전성 검증 방법론 정립 및 적용 (Establishment and Application of Nuclear Criticality Safety Validation Methodology)

  • 이서정;차균호
    • 방사성폐기물학회지
    • /
    • 제16권3호
    • /
    • pp.315-330
    • /
    • 2018
  • 미임계 시설은 정상 또는 사고상태에서 핵임계안전성이 확보되어야 한다. 이를 위해선 계산된 임계도가 바이어스와 불확실도로 결정된 미임계상한치(USL)를 초과하지 않는다는 것을 검증하는 절차가 반드시 필요하다. 하지만 핵임계안전성 검증방법론은 여러 가지가 존재하며, 방법론이 달라지면 USL도 달라지므로 가장 적절한 한가지의 방법론으로 평가하는 것이 중요하다. 본 연구에서는 핵임계안전성 검증 방법론이 기술된 두 개의 문서를 비교 분석하여 한 가지 방법론으로 정립하였고, SCALE6.1 코드를 이용한 용기 설계에서의 미임계상한치 결정에 적용하였다.

A Criticality Analysis of the GBC-32 Dry Storage Cask with Hanbit Nuclear Power Plant Unit 3 Fuel Assemblies from the Viewpoint of Burnup Credit

  • Yun, Hyungju;Kim, Do-Yeon;Park, Kwangheon;Hong, Ser Gi
    • Nuclear Engineering and Technology
    • /
    • 제48권3호
    • /
    • pp.624-634
    • /
    • 2016
  • Nuclear criticality safety analyses (NCSAs) considering burnup credit were performed for the GBC-32 cask. The used nuclear fuel assemblies (UNFAs) discharged from Hanbit Nuclear Power Plant Unit 3 Cycle 6 were loaded into the cask. Their axial burnup distributions and average discharge burnups were evaluated using the DeCART and Multi-purpose Analyzer for Static and Transient Effects of Reactors (MASTER) codes, and NCSAs were performed using SCALE 6.1/STandardized Analysis of Reactivity for Burnup Credit using SCALE (STARBUCS) and Monte Carlo N-Particle transport code, version 6 (MCNP 6). The axial burnup distributions were determined for 20 UNFAs with various initial enrichments and burnups, which were applied to the criticality analysis for the cask system. The UNFAs for 20- and 30-year cooling times were assumed to be stored in the cask. The criticality analyses indicated that $k_{eff}$ values for UNFAs with nonuniform axial burnup distributions were larger than those with a uniform distribution, that is, the end effects were positive but much smaller than those with the reference distribution. The axial burnup distributions for 20 UNFAs had shapes that were more symmetrical with a less steep gradient in the upper region than the reference ones of the United States Department of Energy. These differences in the axial burnup distributions resulted in a significant reduction in end effects compared with the reference.

Sensitivity studies in spent fuel pool criticality safety analysis for APR-1400 nuclear power plants

  • Al Awad, Abdulrahman S.;Habashy, Abdalla;Metwally, Walid A.
    • Nuclear Engineering and Technology
    • /
    • 제50권5호
    • /
    • pp.709-716
    • /
    • 2018
  • A criticality safety analysis was performed for the APR-1400 spent fuel pool region-II to ensure the safe storage of spent fuel, with credit taken for depletion and in-rack neutron absorbers (Metamic panels). PLUS7 fuel assembly was modeled using TRITON-NEWT of SCALE-6.1. The burnup-dependent cross-section library was generated under limiting core-operating conditions with 5%-w U-235 initial enrichment. MCNP5 was used to evaluate the neutron multiplication factor in an infinite array of rack cells with the axially nonuniformly burnt PLUS7 assemblies under normal, abnormal, and accident conditions; including all biases and uncertainties. The main purpose of this study is to investigate reactivity variations due to the critical depletion and reactor operation parameters. The approach, assumptions, and modeling methods were verified by analyzing the contents of the most important fissile and the associated reactivity effects. The Nuclear Regulatory Commission (NRC) guidance on k-eff being less than 1.0 for spent fuel pools filled with unborated water was the main criterion used in this study. It was found that assemblies with 49.0 GWd/MTU and 5.0 w/o U-235 initial enrichment loaded in Region-II satisfy this criterion. Moreover, it was found that the end effect resulted in a positive bias, thus ensuring its consideration.

The impact of fuel depletion scheme within SCALE code on the criticality of spent fuel pool with RBMK fuel assemblies

  • Andrius Slavickas;Tadas Kaliatka;Raimondas Pabarcius;Sigitas Rimkevicius
    • Nuclear Engineering and Technology
    • /
    • 제54권12호
    • /
    • pp.4731-4742
    • /
    • 2022
  • RBMK fuel assemblies differ from other LWR FA due to a specific arrangement of the fuel rods, the low enrichment, and the used burnable absorber - erbium. Therefore, there is a challenge to adapt modeling tools, developed for other LWR types, to solve RBMK problems. A set of 10 different depletion simulation schemes were tested to estimate the impact on reactivity and spent fuel composition of possible SCALE code options for the neutron transport modelling and the use of different nuclear data libraries. The simulations were performed using cross-section libraries based on both, VII.0 and VII.1, versions of ENDF/B nuclear data, and assuming continuous energy and multigroup simulation modes, standard and user-defined Dancoff factor values, and employing deterministic and Monte Carlo methods. The criticality analysis with burn-up credit was performed for the SFP loaded with RBMK-1500 FA. Spent fuel compositions were taken from each of 10 performed depletion simulations. The criticality of SFP is found to be overestimated by up to 0.08% in simulation cases using user-defined Dancoff factors comparing the results obtained using the continuous energy library (VII.1 version of ENDF/B nuclear data). It was shown that such discrepancy is determined by the higher U-235 and Pu-239 isotopes concentrations calculated.

RADIATION SAFETY ASSESSMENT FOR KN-12 SPENT NUCLEAR FUEL TRANSPORT CASK USING MONTE CARLO SIMULATION

  • Kim, J.K.;Kim, G.H.;Shin, C.H.;Choi, H.S.
    • Journal of Radiation Protection and Research
    • /
    • 제26권3호
    • /
    • pp.207-214
    • /
    • 2001
  • The KN-12 spent nuclear fuel (SNF) transport cask is designed for transportation of up to 12 assemblies and is in standby status for being licensed in accordance with Korea Atomic Energy Act. To evaluate radiation shielding and criticality safety of the KN-12 cask, each case of study was carried out using MCNP4B Code. MCNP code is verified by performing benchmark calculation for the KSC-4 SNF cask designed in 1989. As a result of radiation safety evaluation for the KN-12 cask, calculated dose rates always satisfied the standards at the cask surface, at 2m from the surface in normal transport condition, and at 1 m from the surface in hypothetical accident condition. Maximum dose rate was always arisen on the side of the cask. For normal transport condition, photons primarily contribute to dose rate between two kinds of released sources, neutrons and photons, from spent nuclear fuel but for hypothetical accident condition, contrary case was resulted. The level of calculated dose rate was 27.8% of the limit at the cask surface, 89.3% at 2 m from the cask surface, and 25.1% at 1 m from the cask surface. For criticality analysis, keff resulting from the criticality analysis considering the condition of optimum partial flooding with fresh water is 0.89708(0.00065. The results confirm the standards recommended by all regulations on radiation safety.

  • PDF

Criticality effect according to axial burnup profiles in PWR burnup credit analysis

  • Kim, Kiyoung;Hong, Junhee
    • Nuclear Engineering and Technology
    • /
    • 제51권6호
    • /
    • pp.1708-1714
    • /
    • 2019
  • The purpose of the critical evaluation of the spent fuel pool (SFP) is to verify that the maximum effective multiplication factor ($K_{eff}$) is less than the critical safety limit at 100% stored condition of the spent fuel with the maximum reactivity. At nuclear power plants, the storage standard of spent fuel, ie, the loading curve, is established to prevent criticality from being generated in SFP. Here, the loading curve refers to a graph showing the minimum discharged burnup versus the initial enrichment of spent fuel. Recently, US NRC proposed the new critical safety assessment guideline (DSS-ISG-2010-01, Revision 0) of PWR SFPs and most of utilities in US is following it. Of course, the licensed criterion of the maximum effective multiplication factor of SFP remains unchanged and it should be less than 0.95 from the 95% probability and the 95% confidence level. However, the new guideline is including the new evaluation methodologies like the application of the axial burnup profile, the validation of depletion and criticality code, and trend analysis. Among the new evaluation methodologies, the most important factor that affects $K_{eff}$ is the axial burnup profile of spent fuel. US NRC recommends to consider the axial burnup profiles presented in NUREG-6801 in criticality analysis. In this paper, criticality effect was evaluated considering three profiles, respectively: i) Axial burnup profiles presented in NUREG-6801. ii) Representative PWR axial burnup profile. iii) Uniform axial burnup profile. As the result, the case applying the axial burnup profiles presented in NUREG-6801 showed the highest $K_{eff}$ among three cases. Therefore, we need to introduce a new methodology because it can be issued if the axial burnup profiles presented in NUREG/CR-6801 are applied to the domestic nuclear power plants without any other consideration.

Investigating Heavy Water Zero Power Reactors with a New Core Configuration Based on Experiment and Calculation Results

  • Nasrazadani, Zahra;Salimi, Raana;Askari, Afrooz;Khorsandi, Jamshid;Mirvakili, Mohammad;Mashayekh, Mohammad
    • Nuclear Engineering and Technology
    • /
    • 제49권1호
    • /
    • pp.1-5
    • /
    • 2017
  • The heavy water zero power reactor (HWZPR), which is a critical assembly with a maximum power of 100 W, can be used in different lattice pitches. The last change of core configuration was from a lattice pitch of 18-20 cm. Based on regulations, prior to the first operation of the reactor, a new core was simulated with MCNP (Monte Carlo N-Particle)-4C and WIMS (Winfrith Improved Multigroup Scheme)-CITATON codes. To investigate the criticality of this core, the effective multiplication factor ($K_{eff}$) versus heavy water level, and the critical water level were calculated. Then, for safety considerations, the reactivity worth of $D_2O$, the reactivity worth of safety and control rods, and temperature reactivity coefficients for the fuel and the moderator, were calculated. The results show that the relevant criteria in the safety analysis report were satisfied in the new core. Therefore, with the permission of the reactor safety committee, the first criticality operation was conducted, and important physical parameters were measured experimentally. The results were compared with the corresponding values in the original core.