DOI QR코드

DOI QR Code

Criticality analysis of pyrochemical reprocessing apparatuses for mixed uranium-plutonium nitride spent nuclear fuel using the MCU-FR and MCNP program codes

  • P.A. Kizub (Nuclear Safety Institute, Russian Academy of Sciences) ;
  • A.I. Blokhin (Nuclear Safety Institute, Russian Academy of Sciences) ;
  • P.A. Blokhin (Nuclear Safety Institute, Russian Academy of Sciences) ;
  • E.F. Mitenkova (Nuclear Safety Institute, Russian Academy of Sciences) ;
  • N.A. Mosunova (Nuclear Safety Institute, Russian Academy of Sciences) ;
  • V.A. Kovrov (Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences) ;
  • A.V. Shishkin (Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences) ;
  • Yu.P. Zaikov (Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences) ;
  • O.R. Rakhmanova (Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences)
  • Received : 2022.03.03
  • Accepted : 2022.11.26
  • Published : 2023.03.25

Abstract

A preliminary criticality analysis for novel pyrochemical apparatuses for the reprocessing of mixed uranium-plutonium nitride spent nuclear fuel from the BREST-OD-300 reactor was performed. High-temperature processing apparatuses, "metallization" electrolyzer, refinery remelting apparatus, refining electrolyzer, and "soft" chlorination apparatus are considered in this work. Computational models of apparatuses for two neutron radiation transport codes (MCU-FR and MCNP) were developed and calculations for criticality were completed using the Monte Carlo method. The criticality analysis was performed for different loads of fissile material into the apparatuses including overloading conditions. Various emergency situations were considered, in particular, those associated with water ingress into the chamber of the refinery remelting apparatus. It was revealed that for all the considered computational models nuclear safety rules are satisfied.

Keywords

References

  1. Nuclear Technology Review 2020, International Atomic Energy Agency, 2020, pp. 1-67. GC(64)/INF/2. 
  2. R.G. Lewin, M.T. Harisson, International developments in electrorefining technologies for pyrochemical processing of spent nuclear fuels, in: Robin Taylor, Reprocessing and Recycling of Spent Nuclear Fuel, first ed., Woodhead Publishing, 2015, pp. 373-413. 
  3. A. Salyulev, A. Potapov, V. Khokhlov, V. Shishkin, The electrical conductivity of model melts based on LiCl-KCl, used for the processing of spent nuclear fuel, J. Electrochim. Acta 257 (2017) 510-515.  https://doi.org/10.1016/j.electacta.2017.09.154
  4. A. Zhitkov, A. Potapov, K. Karimov, V. Shishkin, A. Dedyukhin, Y. Zaykov, Interaction between UN and CdCl2 in molten LiCl-KCl eutectic. I. Experiment at 773 K, J. Nucl. Eng. Technol. 52 (2020) 123-134, https://doi.org/10.1016/j.net.2019.07.006. 
  5. A. Salyulev, A. Potapov, Electrical conductivity of (LiCl-KCl)eut.-SrCl2 molten mixtures, J. Chem. Eng. Data 66 (12) (2021) 4563-4571, https://doi.org/10.1021/acs.jced.1c00591. 
  6. A.B. Salyulev, A.V. Shishkin, V. Yu. Shishkin, Yu.P. Zaikov, Distillation of lithium chloride from the products of uranium dioxide metallization, J. At. Energy 126 (4) (2019) 226-229, https://doi.org/10.1007/s10512-019-00541-1. 
  7. Yu.P. Zaikov, V. Yu. Shishkin, A.M. Potapov, A.E. Dedyukhin, V.A. Kovrov, A.S. Kholkina, V.A. Volkovich, I.B. Polovov, Research and Development of the pyrochemical processing for the mixed nitride uranium-plutonium fuel, J. Phys. Conf. Ser. 1475 (2020), 012027, https://doi.org/10.1088/1742-6596/ 1475/1/012027. 
  8. E.O. Adamov, Yu.S. Mochalov, V.I. Rachkov, Yu.S. Khomyakov, A. Yu. Shadrin, V.A. Kascheev, A.V. Khaperskaya, Spent nuclear fuel reprocessing and nuclear materials recycling in two-component nuclear energy, J. At. Energy 130 (1) (2021) 29-35, https://doi.org/10.1088/1742-6596/1475/1/012027. 
  9. A.A. Zherebtsov, Yu.S. Mochalov, A.Yu. Shadrin, Yu.P. Zaikov, M.K. Gorbachev, K.A. Sokolov, V.A. Kisly, D.A. Goncharov, Development of the general design of the industrial energy complex with CNFC, J. Phys. Conf. Ser. 1475 (2020), 012007, https://doi.org/10.1088/1742-6596/1475/1/012007. 
  10. J.J. Laidler, et al., Development of pyroprocessing technology, J. Prog. Nucl. Energy 31 (1) (1997) 131-140.  https://doi.org/10.1016/0149-1970(96)00007-8
  11. M.F. Simpson, Developments of Spent Nuclear Fuel Pyroprocessing Technology at Idaho National Laboratory, Idaho National Laboratory, 2012, pp. 1-21. INL/EXT-12-25124. 
  12. J.-G. Kim, S.-J. Lee, S.-B. Park, S.-C. Hwang, H. Lee, High-throughput electrorefining system with graphite cathodes and a bucket-type deposit retriever, J. Procedia Chem. 7 (2012) 754-757.  https://doi.org/10.1016/j.proche.2012.10.114
  13. F. GAO, et al., Criticality safety evaluation of materials concerning pyroprocessing, J. Nucl. Sci. Technol. 48 (6) (2011) 919-928.  https://doi.org/10.1080/18811248.2011.9711778
  14. T. Inoue, T. Koyama, Y. Arai, State of the art of pyroprocessing technology in Japan, J. Energy Procedia. 7 (2011) 405-413.  https://doi.org/10.1016/j.egypro.2011.06.053
  15. K. Nagarajan, et al., Development of pyrochemical reprocessing for spent metal fuels, J. Energy Procedia. 7 (2011) 431-436.  https://doi.org/10.1016/j.egypro.2011.06.057
  16. E. Mendes, et al., Application of the pyrochemical DOS, developed by the CEA, within reprocessing of CERCER transmutation fuel targets, J. Procedia Chem. 21 (2016) 433-440.  https://doi.org/10.1016/j.proche.2016.10.060
  17. Federal (Russian) Rules and Regulations in the Field of Nuclear Energy Use Nuclear Fuel Cycle Facilities, Federal Environmental, Industrial and Nuclear Supervision Service, 2005, pp. 1-37. NP-063-05 (in Russian). 
  18. M.A. Kalugin, D.S. Oleynik, D.A. Shkarovsky, Overview of the MCU Monte Carlo software package, J. Ann. Nucl. Energy 82 (2015) 54-62.  https://doi.org/10.1016/j.anucene.2014.08.032
  19. X-5 Monte Carlo Team, MCNP - A General Monte Carlo N-Particle Transport Code, Version 5, Los Alamos National Laboratory, 2008, pp. 1-416. LA-UR-03-1987. 
  20. N.I. Alekseev, S.N. Bol'shagin, E.A. Gomin, S.S. Gorodkov, M.I. Gurevich, M.A. Kalugin, A.S. Kulakov, S.V. Marin, A.P. Novosel'tsev, D.S. Oleynik, A.V. Pryanichnikov, E.A. Sukhino-Khomenko, D.A. Shkarovskiy, M.S. Yudkevich, The status of MCU-5, J. Phys. At. Nuclei 75 (14) (2012) 1634-1646.  https://doi.org/10.1134/S1063778812140025
  21. A. Plompen, et al., The joint evaluated fission and fusion nuclear data library, JEFF-3.3, J. Eur. Phys. J. A 56 (2020) 181. ISSN 1434-6001. JRC118001. 
  22. S.V. Zabrodskaya, A.V. Ignatyuk, V.N. Koshcheev, V.N. Manokhin, M.N. Nikolaev, V.G. Pronyaev, ROSFOND - Russian national library of neutron data, J. Problems of atomic science and technology, Ser. Nucl. constants 1 - 2 (2007) 3-21 (in Russian). 
  23. A.G. Glazov, V.N. Leonov, V.V. Orlov, A.G. Sila-Novitskii, V.S. Smirnov, A.I. Filin, V.S. Tsikunov, Brest reactor and plant-site nuclear fuel cycle, J. At. Energy 103 (1) (2007) 501-508.  https://doi.org/10.1007/s10512-007-0080-5
  24. P.A. Kizub, E.F. Mitenkova, Fission Neutron Source in Monte Carlo Calculations for Loosely Coupled Systems, Nuclear Safety Institute of the Russian Academy of Sciences, 2015, pp. 1-30. IBRAE-2015-02 (in Russian). 
  25. E.F. Mitenkova, D.A. Koltashev, P.A. Kizub, Distribution of the fission reaction rate in a loosely coupled system for the "checkerboard" test model, J. At. Energy 116 (6) (2014) 345-349. https://doi.org/10.1007/s10512-014-9873-5