• Title/Summary/Keyword: Nuclear $factor-{\kappa}B$ (NF-${\kappa}B)$$I{\kappa}B-{\alpha}$

Search Result 223, Processing Time 0.032 seconds

A Formulated Korean Red Ginseng Extract Inhibited Nitric Oxide Production through Akt- and Mitogen Activated Protein Kinase-dependent Heme Oxygenase-1 Upregulation in Lipoteichoic Acid-stimulated Microglial Cells (홍삼추출액은 lipoteichoic acid로 자극된 소교세포에서 Akt 및 MAPK 의존적으로 heme oxygenase-1 발현을 유도함으로써 NO 생성을 억제함)

  • Shin, Ji Eun;Lee, Kyungmin;Kim, Ji-Hee;Madhi, Iskander;Kim, YoungHee
    • Journal of Life Science
    • /
    • v.29 no.4
    • /
    • pp.402-409
    • /
    • 2019
  • Korean red ginseng made from steaming and drying fresh ginseng has long been used as a traditional herbal medicine due to its effects on the immune, endocrine, and central nerve systems and its anti-inflammatory activity. In this study, we investigated the molecular mechanism responsible for the anti-inflammatory effects of a formulated Korean red ginseng extract (RGE) in response to lipoteichoic acid (LTA), a cell wall component of gram-positive bacteria. RGE inhibited LTA-induced nitric oxide (NO) secretion and inducible nitric oxide synthase (iNOS) expression in BV-2 microglial cells, without affecting cell viability. RGE also inhibited nuclear translocation of nuclear factor kappa B ($NF-{\kappa}B$) p65 and degradation of $I{\kappa}B-{\alpha}$. In addition, RGE increased the expression of heme oxygenase-1 (HO-1) in a dose-dependent manner, and the inhibitory effect of RGE on iNOS expression was abrogated by small interfering RNA-mediated knockdown of HO-1. Moreover, RGE induced nuclear translocation of nuclear factor E2-related factor 2 (Nrf2), a transcription factor that regulates HO-1 expression. Furthermore, the phosphoinositide-3-kinase (PI-3K) inhibitor and mitogen-activated protein kinase (MAPK) inhibitors suppressed RGE-mediated expression of HO-1, and RGE enhanced the phosphorylation of Akt, extracellular signal-regulated kinases (ERKs), p38, and c-JUN N-terminal kinases (JNKs). These results suggested that RGE suppressed the production of NO, a proinflammatory mediator, by inducing HO-1 expression via PI-3K/Akt- and MAPK-dependent signaling in LTA-stimulated microglia. The findings indicate that RGE could be used for the treatment of neuroinflammation induced by grampositive bacteria and that it may have therapeutic potential for various neuroinflammation-associated disorders.

Anti-inflammatory Activities of Cheongpyehwadam-tang

  • Kwak Sang-Ho;Kim Ji-Young;Han Eun-Hee;Oh Kyo-Nyeo;Kim Dong-Hee;Jeong Hye-Gwang;Yoo Dong-Youl
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.5
    • /
    • pp.1399-1404
    • /
    • 2005
  • In oriental medicine, Cheongpyehwadam-tang (CHT) has long been used for the cure of inflammatory diseases in the lung and bronchus such as bronchitis, bronchial asthma, pneumonia and tuberculosis. It's use is currently further extended for the treatment of allergic asthma. To investigate the anti-inflammatory effects of CHT, we investigated the effects of CHT on the lipopolysaccharide (LPS)-induced nitric oxide (NO) and pro-inflammatory cytokines ($TNF-{\alpha}$, IL-6, and $IL-1{\beta}$) production, and on the level of inducible nitric oxide synthase (iNOS) and proinflammatory cytokines expression in murine macrophage RAW 264.7 cells. CHT alone did not affect NO or pro-inflammatory cytokines production. In contrast, CHT inhibited LPS-induced NO and proinflammatory cytokines and the levels of LPS-induced iNOS and proinflarnmatory cytokine mRNA in a dose-dependent manner. CHT also inhibited the nuclear factor-kappa B (NF-kB) activation. Taken together, these results suggested that CHT inhibits the production of NO and pro-inflammatory cytokines in RAW 264.7 cells through blockade of NF-kB activation.

Effect of Steviol β-Glucopyranosyl Ester on The Production of Nitric Oxide and Inflammatory Cytokines in RAW 264.7 Cells (Steviol β-Glucopyranosyl Ester가 RAW 264.7 세포의 산화질소 및 염증성 사이토카인 생성에 미치는 영향)

  • Jung, Heehoon;Cho, Uk Min;Hwang, Hyung Seo;Cho, Kun;Lee, Sang Rin;Kim, Moo Sung
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.3
    • /
    • pp.239-247
    • /
    • 2018
  • Chronic inflammation is known to have effects on various diseases such as gout, cancer, dementia, atopic disease, and obesity. In addition, since some signal cascades involved in the development of inflammation are known to affect the damage and aging of the skin tissue, studies are being conducted actively to control the inflammation mechanism. In order to mitigate or prevent inflammatory response, a number of researches have been made to develop anti-inflammatory materials from some plants. In particular, Stevia rebaudiana produces steviol glycosides (SG), a natural sweetener with a distinctive flavor. Studies on some of SG have been shown to have anti-inflammatory activity. Researchers of this study expected that more SG also possess anti-inflammatory activity, besides stevioside, rebaudioside A, and steviol. In order to confirm this possibility, the researchers screened inhibition activity of various steviol glucosides for NO production in RAW 264.7 cell lines. As a result, steviol ${\beta}-glucopyranosyl$ ester (SGE) showed the highest inhibitory activity among steviol derivatives treated at the same molar concentration. In addition, we found that mRNA expression level of $interleukin-1{\alpha}$ ($IL-1{\alpha}$), $interleukin-1{\beta}$ ($IL-1{\beta}$), cyclooxygenase-2 (COX-2), nuclear factor kappa-light chain-enhancer of activated B cells ($NF-{\kappa}B$) and inducible nitric oxide synthase (iNOS) was also decreased in a dose-dependent manner. These results show that SGE inhibits anti-inflammatory activity and NO production in mouse macrophage RAW 264.7 cells. It was confirmed that SGE has potential to be applied as an anti-inflammatory material.

Anti-inflammatory effect of Malus domestica cv. Green ball apple peel extract on Raw 264.7 macrophages

  • Lee, Eun-Ho;Park, Hye-Jin;Kim, Byung-Oh;Choi, Hyong-Woo;Park, Kyeung-Il;Kang, In-Kyu;Cho, Young-Je
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.2
    • /
    • pp.117-123
    • /
    • 2020
  • We examined the anti-inflammatory effect of the peel extract of the newly bred Korean apple (Malus domestica Borkh.) cultivar Green ball. To test its possible use as anti-inflammatory functional material, Raw 264.7 macrophages were treated with pro-inflammatory lipopolysaccharide (LPS) in the presence or absence of Green ball apple peel ethanol extract (GBE). Notably, up to 500 ㎍/mL of GBE did not result in any signs of inhibition on cellular metabolic activity or cytotoxicity in Raw 264.7 macrophages. Supplementation with GBE to LPS-treated Raw 264.7 macrophage significantly suppressed various pro-inflammatory responses in a dose-dependent manner, including i) nitric oxide (NO) production, ii) accumulation of inducible NO synthase and cyclooxygenase-2, iii) phosphorylation of nuclear factor-kappa B (NF-κB) subunit p65, and iv) expression of pro-inflammatory biomarker genes, including tumor necrosis factor alpha, interleukin 1 beta, interleukin 6, monocyte chemoattractant protein-1, and prostaglandin E synthase 2.

Cytochalasin B Modulates Macrophage-Mediated Inflammatory Responses

  • Kim, Mi-Yeon;Kim, Jong-Hoon;Cho, Jae Youl
    • Biomolecules & Therapeutics
    • /
    • v.22 no.4
    • /
    • pp.295-300
    • /
    • 2014
  • The actin cytoskeleton plays an important role in macrophage-mediated inflammatory responses by modulating the activation of Src and subsequently inducing nuclear factor (NF)-${\kappa}B$ translocation. In spite of its critical functions, few papers have examined how the actin cytoskeleton can be regulated by the activation of toll-like receptor (TLR). Therefore, in this study, we further characterized the biological value of the actin cytoskeleton in the functional activation of macrophages using an actin cytoskeleton disruptor, cytochalasin B (Cyto B), and explored the actin cytoskeleton's involvement in morphological changes, cellular attachment, and signaling events. Cyto B strongly suppressed the TLR4-mediated mRNA expression of inflammatory genes such as cyclooxygenase (COX)-2, tumor necrosis factor (TNF)-${\alpha}$, and inducible nitric oxide (iNOS), without altering cell viability. This compound also strongly suppressed the morphological changes induced by lipopolysaccharide (LPS), a TLR4 ligand. Cyto B also remarkably suppressed NO production under non-adherent conditions but not in an adherent environment. Cyto B did not block the co-localization between surface glycoprotein myeloid differentiation protein-2 (MD2), a LPS signaling glycoprotein, and the actin cytoskeleton under LPS conditions. Interestingly, Cyto B and PP2, a Src inhibitor, enhanced the phagocytic uptake of fluorescein isothiocyanate (FITC)-dextran. Finally, it was found that Cyto B blocked the phosphorylation of vasodilator-stimulated phosphoprotein (VASP) at 1 min and the phosphorylation of heat shock protein 27 (HSP27) at 5 min. Therefore, our data suggest that the actin cytoskeleton may be one of the key components involved in the control of TLR4-mediated inflammatory responses in macrophages.

Protective Effects of a Lycium chinense Ethanol Extract through Anti-oxidative Stress on Acute gastric lesion mice (급성 위염 유발 마우스 동물 모델에서 구기자(枸杞子) 에탄올 추출물의 위점막 손상 보호 효과)

  • Lee, AhReum;Lee, JooYoung;Kim, MinYeong;Shin, Mi-Rae;Shin, SungHo;Seo, BuIl;Kwon, OJun;Roh, Seong-Soo
    • The Korea Journal of Herbology
    • /
    • v.30 no.6
    • /
    • pp.63-68
    • /
    • 2015
  • Objectives : Gastric lesions affect many people around the world and their development are results of the imbalance between destructive and protective factors in the gastric mucosa. Lycium chinense has been widely used as a traditional Korean medicine, it was recently reported that they have potent anti-inflammatory effects in chronic hepatitis models. Therefore, this study aimed to investigate the anti-inflammatory activity of Lycium chinense extract (LCE) on HCl-Ethanol induced gastric lesion mice.Methods : The ICR mice were divided randomly into five groups of six animals each. Group A was normal mice, and group B was treated orally with 0.5 ml 150 mM HCl-60% Ethanol. Mice in group C and D were pre-treatment of LCE (100 mg/kg and 200 mg/kg bodyweight, p.o before HCl/ethanol treatment) and group E was orally administered sucralfate (10 mg/kg).Results : 150mM HCl/60% ethanol-induced gastric mucosal injury mice were ameliorated mucosal damage upon histological evaluation by treatment of LCE. Pre-treatment of LCE attenuated reactive oxidative species (ROS) and produces peroxynitrite (ONOO-) in stomach tissues. As results of stomach protein analyses, LCE effectively reduce inflammatory-related factors such as cyclooxygenase-2 (COX-2), tumor necrosis factor alpha (TNF-α), inducible nitric oxide synthase (iNOS) and interleukin-6 (IL-6) in gastric lesion mice. In addition, nuclear factor kappa B (NF-κB) and inhibitor of phosphorylation of nuclear factor kappa B (p-IκB) were down-regulated in LCE-administrated gastric lesion mice.Conclusions : Our discovery supports that the therapeutic activity of LCE ameliorate the development of gastric lesion via suppressing the oxidative stress and gastric partial inflammation induced by 150 mM HCl/60% ethanol.

Anti-oxidative and anti-inflammatory effects of aerial parts of Rumex japonicus Houtt. in RAW 264.7 cells (양제엽(羊蹄葉) 메탄올 추출물의 항산화 및 항염증 효과)

  • Cho, Hyun-Jin;Yun, Hyun-Jeong;Park, Sun-Dong
    • The Korea Journal of Herbology
    • /
    • v.26 no.1
    • /
    • pp.87-96
    • /
    • 2011
  • Objectives : The aerial parts of Rumex japonicus Houtt. (RF) is used by traditional clinics to treat parasite infection in East asia. This study aims a verification of anti-oxidative and anti-inflammatory effects of RF methanol extract. Methods : Anti-oxidative effects of RF were measured by scavenging activities of DPPH, superoxide, nitric oxide (NO) and peroxynitrite radicals. And also scavenging activities of anti-oxidation in lipopolysaccharide (LPS)-treated RAW 264.7 cells were measured. The inhibitory effects against the production of inflammatory mediators including NO, prostaglandin $E_2$ ($PGE_2$), tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin-$1{\beta}$ (IL-$1{\beta}$), IL-6, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and the translocation of nuclear factor (NF)-${\kappa}B$ in LPS-stimulated RAW 264.7 cells by RF were tested. Results : RF scavenged DPPH, superoxide, NO and peroxynitrite radicals, and RF (at $200{\mu}g/m{\ell}$) reduced the inflammatory mediators definitely. Conclusions : These results indicate that RF may be a potential drug source for oxidative stress related inflammatory diseases.

miR-30a-5p Augments the Anti-inflammatory Effects of Dexmedetomidine in LPS-induced BV2 Cells (LPS로 유도된 BV2 세포에서 Dexmetomidine이 갖는 항염증효과에 대한 miR-30a-5p의 시너지 효과)

  • Kim, Ji-Eun;Yang, Seung-Ju
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.54 no.3
    • /
    • pp.201-208
    • /
    • 2022
  • Neuroinflammation is defined as a neurological inflammation within the brain and the spinal cord. In neuroinflammation, microglia are the tissue-resident macrophages of the central nervous system, which act as the first line of defense against harmful pathogens. Dexmedetomidine (Dex) has an anti-inflammatory effect in many neurological conditions. Additionally, the microRNA-30a-5p (miR-30a-5p) mimic has been proven to be effective in macrophages in inflammatory conditions. This study aimed to investigate the synergistic anti-inflammatory effects of both miR-30a-5p and Dex in lipopolysaccharide (LPS)-induced BV2 cells. This study showed that miR-30a-5p and Dex decreased nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) translocation in LPS-induced BV2 cells. MiR-30a-5p and Dex alleviated tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), LPS-induced phosphorylation c-Jun N-terminal kinases (JNK), extracellular signal-regulated kinase (ERK) and p38. Also, the expression of the NOD-like receptor pyrin domain containing 3 inflammasome (NLRP3), cleaved caspase-1, and ASC was inhibited. Furthermore, LPS-stimulated nitric oxide (NO) production, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) expression were attenuated by Dex and miR-30a-5p. Our results indicate that a combination of Dex and miR-30a-5p, attenuates NF-κB activation, the mitogen-activated protein kinase (MAPK) signaling pathway, and inflammatory mediators involved in LPS-induced inflammation and inhibits the activation of the NLRP3 inflammasome in LPS-activated BV2 cells.

Taxifolin Inhibited the Nitric Oxide Production and Expression of Pro-inflammatory Cytokine mRNA in Lipopolysaccharide-stimulated RAW264.7 Cells

  • Rhee, Man-Hee;Endale, Mehari;Kamruzzaman, SM;Lee, Whi-Min;Park, Hwa-Jin;Yoo, Myung-Jo;Cho, Jae-Youl
    • Biomedical Science Letters
    • /
    • v.14 no.3
    • /
    • pp.147-155
    • /
    • 2008
  • In previous works, we found that solvent extract of Opuntia humifusa Raf., a member of the lactaceae family, displayed potent anti-oxidative and anti-inflammatory activities. Thus, all solvent fractions, except for the water layer, showed potent scavenging effects. According to activity-guided fractionation, one of active radical scavenging principles in the ethyl acetate fraction was found to be taxifolin. In this study, we investigated whether taxifolin showed anti-oxidative activity. In addition, taxifolin modulated nitric oxide (NO) release and the expression of pro-inflammatory cytokine mRNA such as interleukin-$1{\beta}$ (IL-$1{\beta}$), IL-6, granulocyte-macrophage colony-stimulating factor (GM-CSF), and TNF-${\alpha}$. Taxifolin showed potent anti-oxidant activity with the $IC_{50}\;of\;8.5{\pm}1.4\;and\;9.3{\pm}1.0{\mu}M$ using xanthine/xanthine oxidase (XO) assay and 2,2-Diphenyl-lpicrylhydrazyl radical (DPPH) assay, respectively. We next determined the role of taxifolin on the immunomodulating activity using murine macrophage cell line RAW264.7 cells. Taxifolin dose-dependently inhibited NO production in lipopolysaccharide (LPS)-activated RAW264.7. It also significantly blocked the expression of inducible NO synthase (iNOS) mRNA in the LPS-stimulated RAW264.7 cells. In addition, taxifolin potently suppressed the expression of IL-$1{\beta}$, IL-6 and GM-CSF mRNA in LPS-activated RAW264.7 cells, but not that of TNF-${\alpha}$ Moreover, taxifolin significantly inhibited the transcriptional activity of nuclear factor-${\kappa}B$ (NF-${\kappa}B$) and activator protein -1 (AP-1). These results suggest that taxifolin may downregulate inflammatory iNOS, IL-$1{\beta}$, IL-6 and GM-CSF gene expressions through inhibition of NF-K and AP-1 activation in LPS-stimulated RAW264.7 cells.

  • PDF

Anti-inflammatory activity of a sulfated polysaccharide isolated from an enzymatic digest of brown seaweed Sargassum horneri in RAW 264.7 cells

  • Sanjeewa, Kalu Kapuge Asanka;Fernando, Ilekkuttige Priyan Shanura;Kim, Eun-A;Ahn, Ginnae;Jee, Youngheun;Jeon, You-Jin
    • Nutrition Research and Practice
    • /
    • v.11 no.1
    • /
    • pp.3-10
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Sargassum horneri is an edible brown alga that grows in the subtidal zone as an annual species along the coasts of South Korea, China, and Japan. Recently, an extreme amount of S. horneri moved into the coasts of Jeju Island from the east coast of China, which made huge economic and environmental loss to the Jeju Island. Thus, utilization of this biomass becomes a big issue with the local authorities. Therefore, the present study was performed to evaluate the anti-inflammatory potential of crude polysaccharides (CPs) extracted from S. horneri China strain in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. MATERIALS/METHODS: CPs were precipitated from S. horneri digests prepared by enzyme assistant extraction using four food-grade enzymes (AMG, Celluclast, Viscozyme, and Alcalase). The production levels of nitric oxide (NO) and pro-inflammatory cytokines, including tumor necrosis factor (TNF)-${\alpha}$ and interleukin (IL)-$1{\beta}$ were measured by Griess assay and enzyme-linked immunosorbent assay, respectively. The levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), nuclear factor (NF)-${\kappa}B$, and mitogen-activated protein kinases (MAPKs) were measured by using western blot. The IR spectrums of the CPs were recorded using a fourier transform infrared spectroscopy (FT-IR) spectrometer. RESULTS: The polysaccharides from the Celluclast enzyme digest (CCP) showed the highest inhibition of NO production in LPS-stimulated RAW 264.7 cells ($IC_{50}$ value: $95.7{\mu}g/mL$). Also, CCP dose-dependently down-regulated the protein expression levels of iNOS and COX-2 as well as the production of inflammatory cytokines, including TNF-${\alpha}$ and IL-$1{\beta}$, compared to the only LPS-treated cells. In addition, CCP inhibited the activation of NF-${\kappa}B$ p50 and p65 and the phosphorylation of MAPKs, including p38 and extracellular signal-regulated kinase, in LPS-stimulated RAW 264.7 cells. Furthermore, FT-IR analysis showed that the FT-IR spectrum of CCP is similar to that of commercial fucoidan. CONCLUSIONS: Our results suggest that CCP has anti-inflammatory activities and is a potential candidate for the formulation of a functional food ingredient or/and drug to treat inflammatory diseases.