• 제목/요약/키워드: Nuclear $factor-{\kappa}B$ (NF-${\kappa}B)$$I{\kappa}B-{\alpha}$

Search Result 223, Processing Time 0.032 seconds

Anti-inflammatory and Antioxidant Effects of Cheongnoimyungshin-hwan in RAW 264.7 Macrophages (RAW 264.7 대식세포에서 청뇌명신환(淸腦明神丸)에 의한 염증성 및 산화적 스트레스 반응 억제 효능)

  • Son, Byun Woo;Lee, Myeong Hwa;Hwang, Won Deok
    • Herbal Formula Science
    • /
    • v.26 no.1
    • /
    • pp.1-12
    • /
    • 2018
  • Objectives : Cheongnoimyungshin-hwan (CNMSH) is a Herbal compound prescription that is composed mainly of herbal medicines such as Ginseng Radix Alba, Angelicae Gigantis Radix, Dioscoreae Rhizoma, Longan Arillus and cornus cervi parvum, and for the purpose of improving memory and preventing dementia. Methods : In this study, it was investigated whether CNMSH could suppress inflammatory response and oxidative stress in the lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. As a result, CNMSH decreased expression of inducible nitric oxide (NO) synthase and cyclooxygenase-2, and also inhibited production of NO, prostaglandin E2. Results : This effect was associated with the suppression of the expression of p65, one of the nuclear factor-kappaB ($NF-{\kappa}B$) subunits, and increased expression of $I{\kappa}B-{\alpha}$, inhibit the $NF-{\kappa}B$ transcription factor. In addition, CNMSH significantly blocked intracellular reactive oxygen species accumulation in response to LPS stimulation. Furthermore, CNMSH increased expression of nuclear factor erythroid 2-related factor (Nrf)-2 activation and heme oxygenase (HO)-1. Conclusions : Therefore, it has been shown anti-inflammatory and antioxidant effects by inhibiting the expression and production of inflammatory mediators in LPS-stimulated macrophages, and is associated with ROS generation and is activated by Nrf2/HO-1 signaling pathway.

Lactobacillus sakei S1 Improves Colitis Induced by 2,4,6-Trinitrobenzene Sulfonic Acid by the Inhibition of NF-κB Signaling in Mice

  • Jang, Se-Eun;Min, Sung-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.71-78
    • /
    • 2020
  • Lactobacillus sakei S1 strongly inhibits the expression of interleukin (IL)-6 and IL-1β in lipopolysaccharide-induced peritoneal macrophages by a mechanism for which lactic acid bacteria from kimchi that inhibit tumor necrosis factor-alpha (TNF-α) were isolated. Therefore, we further evaluated the protective effect of this strain on the colitis mouse model induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS). TNBS significantly elevated myeloperoxidase (MPO) expression, macroscopic scores, and colon shortening. Oral L. sakei S1 administration resulted in reduction of TNBS-induced loss in body weight, colon shortening, MPO activity, expression of cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS) and nuclear factor-kappa B (NF-κB). L. sakei S1 inhibited the expression of inflammatory cytokines IL-1β, IL-6 and TNF-α, induced by TNBS, but enhanced IL-10 expression. L. sakei S1 showed resistance to artificial digestive juices and adherence to intestinal epithelial Caco-2 cells. Thus, L. sakei S1 may inhibit the NF-κB pathway and be used in functional food to treat colitis.

Anti-Inflammatory Effect of Licochalcone E, a Constituent of Licorice, on Lipopolysaccharide-Induced Inflammatory Responses in Murine Macrophages (Licochalcone E의 항염증 효과와 그 기전에 대한 연구)

  • Park, Geun-Mook;Jun, Jong-Gab;Kim, Jin-Kyung
    • Journal of Life Science
    • /
    • v.21 no.5
    • /
    • pp.656-663
    • /
    • 2011
  • Licochalcone, a major phenolic constituent of the licorice species Glycyrrhiza inflata, a constituent of licorice, exhibits various biological properties, including chemopreventive-, antibacterial-, and anti-spasmodic activities. Recently, Licochalcone E (LicE) was isolated from the roots of Glycyrrhiza inflate, however its biological functions have not been fully examined. In the present study, we investigated the ability of LicE to regulate inflammation reactions in macrophages. Our in vitro experiments using murine macrophages, RAW264.7 cells, showed that LicE suppressed not only nitric oxide (NO) and prostaglandin $E_2$ generation, but also the expression of inducible NO synthase and cyclooxygenase-2 induced by lipopolysaccharide (LPS). Similarly, LicE inhibited the release of proinflammatory cytokines induced by LPS in RAW264.7 cells, including tumor necrosis factor-${\alpha}$ and interleukin-6. The underlying mechanism of LicE on anti-inflammatory action correlated with down-regulation of the nuclear factor-${\kappa}$B. Our data collectively indicate that LicE inhibited the production of several inflammatory mediators and might be used in the treatment of various inflammatory diseases.

Aggregatibacter actinomycetemcomitans Strongly Stimulates Endothelial Cells to Produce Monocyte Chemoattractant Protein-1 and Interleukin-8

  • Choi, Eun-Kyoung;Kang, Mi-Sun;Oh, Byung-Ho;Kim, Sang-Yong;Kim, So-Hee;Kang, In-Chol
    • International Journal of Oral Biology
    • /
    • v.37 no.3
    • /
    • pp.137-145
    • /
    • 2012
  • Aggregatibacter actinomycetemcomitans is the most important etiologic agent of aggressive periodontitis and can interact with endothelial cells. Monocyte chemoattractant protein-1 (MCP-1) and interleukin-8 (IL-8) are chemokines, playing important roles in periodontal pathogenesis. In our current study, the effects of A. actinomycetemcomitans on the production of MCP-1 and IL-8 by human umbilical vein endothelial cells (HUVEC) were investigated. A. actinomycetemcomitans strongly induced the gene expression and protein release of both MCP-1 and IL-8 in a dose- and time-dependent manner. Dead A. actinomycetemcomitans cells were as effective as live bacteria in this induction. Treatment of HUVEC with cytochalasin D, an inhibitor of endocytosis, did not affect the mRNA up-regulation of MCP-1 and IL-8 by A. actinomycetemcomitans. However, genistein, an inhibitor of protein tyrosine kinases, substantially inhibited the MCP-1 and IL-8 production by A. actinomycetemcomitans, whereas pharmacological inhibition of each of three members of mitogen-activated protein (MAP) kinase family had little effect. Furthermore, gel shift assays showed that A. actinomycetemcomitans induces a biphasic activation (early at 1-2 h and late at 8-16 h) of nuclear factor-${\kappa}B$ (NF-${\kappa}B$) and an early brief activation (0.5-2 h) of activator protein-1 (AP-1). Activation of canonical NF-${\kappa}B$ pathway ($I{\kappa}B$ kinase activation and $I{\kappa}B-{\alpha}$ degradation) was also demonstrated in these experiments. Although lipopolysaccharide from A. actinomycetemcomitans also induced NF-${\kappa}B$ activation, this activation profile over time differed from that of live A. actinomycetemcomitans. These results suggest that the expression of MCP-1 and IL-8 is potently increased by A. actinomycetemcomitans in endothelial cells, and that the viability of A. actinomycetemcomitans and bacterial internalization are not required for this effect, whereas the activation of protein tyrosine kinase(s), NF-${\kappa}B$, and AP-1 appears to play important roles. The secretion of high levels of MCP-1 and IL-8 resulting from interactions of A. actinomycetemcomitans with endothelial cells may thus contribute to the pathogenesis of aggressive periodontitis.

Immunomodulating Effect of Extract of Cheonggukjang Fermented with Bacillus amyloliquefaciens (SRCM100730) on RAW 264.7 Macrophages (Bacillus amyloliquefaciens(SRCM 100730)로 발효된 청국장 추출물의 RAW 264.7 대식세포 면역증강 활성)

  • Choo, Seung Bin;Yang, Hui;Jeong, Do-Yuon;Jeong, Seong-Yeop;Ryu, Myeong Seon;Oh, Kwang-Hoon;Yoo, Yung Choon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.11
    • /
    • pp.1300-1307
    • /
    • 2017
  • Cheonggukjang is well known as a traditional fermented food in Korea and has various biological activity. In this study, immune-enhancing activity of extract of cheonggukjang fermented with Bacillus amyloliquefaciens (SRCM100730) was examined in RAW 264.7 murine macrophages. Treatment with extract augmented production of nitric oxide (NO) and tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$) from RAW 264.7 macrophages in a dose-dependent manner. Similarly, increased mRNA expression of inducible nitric oxide synthase (iNOS) and $TNF-{\alpha}$ was observed. In addition, the extract synergistically enhanced production of NO and $TNF-{\alpha}$ from lipopolysaccharide (LPS)-stimulated macrophages. Analysis of intracellular pathways revealed that the immune-enhancing activity of cheonggukjang extract was related to activation of mitogen-activated protein kinases (MAPK) and nuclear factor kappa-light-chain-enhancer of activated B cells ($NF-{\kappa}B$). These results suggest that cheonggukjang fermented with B. amyloliquefaciens (SRCM100730) is a beneficial food effective for activation of immune responses.

Anti-inflammatory properties of chloroform extracts from GW10-45, a new cultivar derived from Pleurotus ferulae, in RAW264.7 murine macrophages. (아위느타리 신품종 GW10-45 클로로포름 추출물의 항염증 효과)

  • Choi, Hyung-Wook;Kim, Eun-Joo;Kim, Keun-Ki;Shin, Pyung-Gyun;Kim, Gun-Do
    • Journal of Mushroom
    • /
    • v.14 no.4
    • /
    • pp.220-224
    • /
    • 2016
  • Chronic inflammation, which results from continuous exposure to antigens, is one of major reasons for tissue damage and diseases such as rheumatoid arthritis and type 2 diabetes. In this study, we investigated the anti-inflammatory effects of extracts (hexane, $CHCl_3$, MeOH, $MeOH/H_2O$, and $H_2O$) from GW10-45, which is our new cultivar of an edible mushroom Pleurotus ferulae (ASI 2803 and ASI 2778), in RAW264.7 murine macrophages. None of the extracts showed cytotoxicity in RAW264.7 cells and the hexane, CHCl and H extracts reduced nitric oxide (NO) production, an important inflammatory marker, in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Particularly, the extract (CG45) inhibited NO production more than the other extracts did. To elucidate the effects of CG45 on molecular targets involved in pro-inflammatory responses, we performed western blot analysis. Expression of inducible nitric oxide (iNOS) significantly decreased in LPS and CG45 co-incubated cells compared to that in LPS only-treated cells. Additionally, another protein thatplays a critical role in inflammation, was down-regulated in cells treated with both LPS and CG45. In the nuclear factor $(NF)-{\kappa}B$ pathway, phosphorylation of $I{\kappa}B{\alpha}$ decreased in RAW264.7 cells treated with both LPS and CG45. Furthermore, CG45 inhibited the phosphorylation of $NF-{\kappa}B$ in LPS-stimulated RAW264.7 cells. Conclusively, CG45 could suppress pro-inflammatory responses in LPS-stimulated RAW264.7 cells by down-regulating not only the phosphorylation of $NF-{\kappa}B$ and $I{\kappa}B{\alpha}$ but also the expression of iNOS and COX-2 without any cytotoxicity.

A Medium-Chain Fatty Acid, Capric Acid, Inhibits RANKL-Induced Osteoclast Differentiation via the Suppression of NF-κB Signaling and Blocks Cytoskeletal Organization and Survival in Mature Osteoclasts

  • Kim, Hyun-Ju;Yoon, Hye-Jin;Kim, Shin-Yoon;Yoon, Young-Ran
    • Molecules and Cells
    • /
    • v.37 no.8
    • /
    • pp.598-604
    • /
    • 2014
  • Fatty acids, important components of a normal diet, have been reported to play a role in bone metabolism. Osteoclasts are bone-resorbing cells that are responsible for many bone-destructive diseases such as osteoporosis. In this study, we investigated the impact of a medium-chain fatty acid, capric acid, on the osteoclast differentiation, function, and survival induced by receptor activator of NF-${\kappa}B$ ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). Capric acid inhibited RANKL-mediated osteoclastogenesis in bone marrow-derived macrophages and suppressed RANKL-induced $I{\kappa}B{\alpha}$ phosphorylation, p65 nuclear translocation, and NF-${\kappa}B$ transcriptional activity. Capric acid further blocked the RANKL-stimulated activation of ERK without affecting JNK or p38. The induction of NFATc1 in response to RANKL was also attenuated by capric acid. In addition, capric acid abrogated M-CSF and RANKL-mediated cytoskeleton reorganization, which is crucial for the efficient bone resorption of osteoclasts. Capric acid also increased apoptosis in mature osteoclasts through the induction of Bim expression and the suppression of ERK activation by M-CSF. Together, our results reveal that capric acid has inhibitory effects on osteoclast development. We therefore suggest that capric acid may have potential therapeutic implications for the treatment of bone resorption-associated disorders.

Anti-inflammatory effects of Herba Artemisiae Capillaris as a consequence of the inhibition of NF-kappa B-dependent iNOS and pro-inflammatory cytokines production. (Nuclear Factor kappa B 억제를 통한 인진추출물의 inducible Nitric Oxide synthase 및 Cytokine 억제효과)

  • Kim, Dae-Sung;Park, Sook-Jahr;Jo, Mi-Jeong;Park, Sang-Mi;Kim, Sang-Chan;Byun, Sung-Hui
    • Herbal Formula Science
    • /
    • v.17 no.2
    • /
    • pp.151-162
    • /
    • 2009
  • Herba Artemisiae Capillaris is the dried bud of Artemisia capillaris Thunb, which has been used for expelling heat to loosen the bowels and normalizing gallbladder function to cure jaundice in traditional oriental medicines. In the present study, we evaluated the anti-inflammatory effects of the aqueous extracts of Herba Artemisiae Capillaris (HAC) in LPS-activated Raw 264.7 cells. Cells were treated with $1\;{\mu}g/ml$ of LPS 1 h before adding HAC extract. Cell viability was determined by MTT assay, and the relative level of NO was measured with Griess reagent. TNF-$\alpha$, IL-$1{\beta}$, and IL-6 cytokines were detected by ELISA. During the entire experimental period, all three doses of HAC extract (0.03, 0.10 and 0.30 mg/ml) had no significant cytotoxicity. LPS-activated cells showed increased NO levels and iNOS expressions compared to control. However, these increases were dramatically attenuated by treatment with HAC extract. Moreover, the inhibitory effects of HAC extract occurred in a dose-dependent manner. In addition, HAC extract reduced the translocation of $NF{\kappa}B$ into nuclear. HAC reduced production of IL-$1{\beta}$ and IL-6 by LPS, although it had no effects on TNF-$\alpha$. These results demonstrate that liquiritigenin exerts anti-inflammatory effects, which results from the inhibition of $NF{\kappa}B$ activation in macrophages, thereby decreasing production of iNOS and proinflammatory cytokines. Taken together, these results indicate that the aqueous extracts of Herba Artemisiae Capillaris warrant further development as an anti-inflammatory agent for the treatment of gram-negative bacterial infections.

  • PDF

Can herbal drug(s) meet the challenges of genomewide screen results on rheumatoid arthritis

  • Paul, Bholanath
    • Advances in Traditional Medicine
    • /
    • v.5 no.4
    • /
    • pp.251-261
    • /
    • 2005
  • Rheumatoid arthritis (RA) is an autoimmune/inflammatory disorder with a complex genetic component. RA is characterized by chronic inflammation of the synovial membrane in the joint, which leads to the progressive destruction of articular cartilage, ligament and bone. Several cytokines such as tumor necrosis $factor-{\alpha}\;TNF-{\alpha}\;and\;interleukin-1{\beta}\;(IL-1{\beta})$ and interleukin-6 (IL-6) have been implicated in the pathological mechanisms of synovial tissue proliferation, joint destruction and programmed cell death in rheumatoid joint. Genome wide screening of subjects suffering from autoimmune diseases especially arthritis revealed linkage to inflammatory molecules like $TNF-{\alpha},\;IL-1{\beta}$ and IL-6, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), nuclear factor-kappaB $(NF-{\kappa}B)$ and human leucocyte antigen/major histocompatibility complex (HLA/MHC) locus. The status of the pharmacological mechanism of herbal drugs in the light of genome wide screening results has been discussed to reinforce the therapeutic potential and the pharmacological basis of the herbal drugs.

L1 Cell Adhesion Molecule Suppresses Macrophage-mediated Inflammatory Responses (L1 Cell Adhesion Molecule에 의한 대식세포 매개 염증반응의 억제 기전 분석)

  • Yi, Young-Su
    • YAKHAK HOEJI
    • /
    • v.60 no.3
    • /
    • pp.128-134
    • /
    • 2016
  • L1 cell adhesion molecule (L1CAM) is a cell surface molecule to initiate a variety of cellular responses through interacting with other cell adhesion molecules in a homophilic or heterophilic manner. Although its expression was found to be upregulated in some tumor cells, including cholangiocarcinomas, and ovarian cancers, and many studies have investigated the role of L1CAM in these cancers, its role in inflammatory responses has been poorly understood. In this study, we explored the role of L1CAM in macrophage-mediated inflammatory responses. L1CAM significantly suppressed the production of nitric oxide (NO), but induced cell proliferation in RAW264.7 cells. L1CAM expression was detectable, but its expression was markedly decreased by lipopolysaccharide (LPS) in RAW264.7 cells. In addition, the expression of pro-inflammatory genes, such as tumor necrosis factor (TNF)-${\alpha}$, cyclooxygenase (COX)-2, and inducible nitric oxide synthase (iNOS) induced by LPS was dramatically suppressed by L1CAM in RAW264.7 cells. L1CAM inhibited the transcriptional activities of NF-${\kappa}B$ and AP-1 while its cytoplasmic domain deletion form, $L1{\Delta}CD$ did not suppressed their activities in RAW264.7 cells. Moreover, L1CAM suppressed nuclear translocation of p65 and p50 as well as c-Jun, c-Fos and p-ATF2 which are transcription factors of NF-${\kappa}B$ and AP-1, respectively. In conclusion, L1CAM suppressed inflammatory responses in macrophages through inhibiting NF-${\kappa}B$ and AP-1 pathways.