Browse > Article
http://dx.doi.org/10.4014/jmb.1907.07050

Lactobacillus sakei S1 Improves Colitis Induced by 2,4,6-Trinitrobenzene Sulfonic Acid by the Inhibition of NF-κB Signaling in Mice  

Jang, Se-Eun (Department of Food and Nutrition, Eulji University)
Min, Sung-Won (SG Medical)
Publication Information
Journal of Microbiology and Biotechnology / v.30, no.1, 2020 , pp. 71-78 More about this Journal
Abstract
Lactobacillus sakei S1 strongly inhibits the expression of interleukin (IL)-6 and IL-1β in lipopolysaccharide-induced peritoneal macrophages by a mechanism for which lactic acid bacteria from kimchi that inhibit tumor necrosis factor-alpha (TNF-α) were isolated. Therefore, we further evaluated the protective effect of this strain on the colitis mouse model induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS). TNBS significantly elevated myeloperoxidase (MPO) expression, macroscopic scores, and colon shortening. Oral L. sakei S1 administration resulted in reduction of TNBS-induced loss in body weight, colon shortening, MPO activity, expression of cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS) and nuclear factor-kappa B (NF-κB). L. sakei S1 inhibited the expression of inflammatory cytokines IL-1β, IL-6 and TNF-α, induced by TNBS, but enhanced IL-10 expression. L. sakei S1 showed resistance to artificial digestive juices and adherence to intestinal epithelial Caco-2 cells. Thus, L. sakei S1 may inhibit the NF-κB pathway and be used in functional food to treat colitis.
Keywords
Lactobacillus sakei; probiotics; colitis; 2,4,6-trinitrobenzene sulfonic acid (TNBS); $NF-{\kappa}B$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Shanahan F. 2002. Gut flora in gastrointestinal disease. Eur. J. Surg. Suppl. 587: 47-52.
2 Jang SE, Han MJ, Kim SY, Kim DH. 2014. Lactobacillus plantarum CLP-0611 ameliorates colitis in mice by polarizing M1 to M2-like macrophages. Int. Immunopharmacol. 21: 186-192.   DOI
3 Chandran P, Satthaporn S, Robins A, Eremin O. 2003. Inflammatory bowel disease: dysfunction of GALT and gut bacterial flora (I). Surgeon 1: 63-75.   DOI
4 Aderem A, Ulevitch RJ. 2000. Toll-like receptors in the induction of the innate immune response. Nature 406: 782-787.   DOI
5 Min SW, Ryu SN, Kim DH. 2010. Anti-inflammatory effects of black rice, cyanidin-3-O-${\beta}$-D-glycoside, and its metabolites, cyanidin and protocatechuic acid. Int. Immunopharmacol. 10: 959-966.   DOI
6 Hutchison S, Choo-Kang BS, Bundick RV, Leishman AJ, Brewer JM, McInnes IB, et al. 2008. Tumour necrosis factoralpha blockade suppresses murine allergic airways inflammation. Clin. Exp. Immunol. 151: 114-122   DOI
7 Lee IA, Park YJ, Joh EH, Kim DH. 2011. Soyasaponin Ab ameliorates colitis by inhibiting the binding of lipopolysaccharide (LPS) to Toll-like receptor (TLR) 4 on macrophages. J. Agric. Food Chem. 59: 13165-13172.   DOI
8 Collins MP, Gibson GR. 1999. Probiotics, prebiotics, and synbiotics: approaches for modulating the microbial ecology of the gut. Am. J. Clin. Nutr. 69: 1052S-1057S.   DOI
9 Aggarwal J, Swami G, Kumar M. 2013. Probiotics and their effects on metabolic diseases: an update. J. Clin. Diagn. Res. 7: 173-177.   DOI
10 Romeo J, Nova E, Warnberg J, Gomez-Martinez S, Diaz Ligia LE, Marcos A. 2010. Immunomodulatory effect of fibres, probiotics and synbiotics in different life-stages. Nutr. Hosp. 25: 341-349.
11 Peran L, Sierra S, Comalada M, Lara-Villoslada F, Bailon E, Nieto A, et al. (2007). A comparative study of the preventative effects exerted by two probiotics, Lactobacillus reuteri and Lactobacillus fermentum, in the trinitrobenzenesulfonic acid model of rat colitis. Br. J. Nutr. 97: 96-103.   DOI
12 Okada Y, Tsuzuki Y, Takeshi T, Furuhashi H, Higashiyama M, Watanabe C, et al. 2018. Novel probiotics isolated from a Japanese traditional fermented food, Funazushi, attenuates DSS-induced colitis by increasing the induction of high integrin ${\alpha}v/{\beta}8$-expressing dendritic cells. J. Gastroenterol. 53: 407-418.   DOI
13 Bellavia M, Rappa F, Lo Bello M, Brecchia G, Tomasello G, Leone A, et al. 2014. Lactobacillus casei and Bifidobacterium lactis supplementation reduces tissue damage of intestinal mucosa and liver after 2,4,6-trinitrobenzenesulfonic acid treatment in mice. J. Biol. Regul. Homeost. Agents. 28: 251-261.
14 Jang SE, Jeong JJ, Kim JK, Han MJ, Kim DH. 2018. Simultaneous amelioratation of colitis and liver injury in mice by Bifidobacterium longum LC67 and Lactobacillus plantarum LC27. Sci. Rep. 8: 7500.   DOI
15 Jang SE, Hyun YJ, Oh YJ, Choi KB, Kim T, Yeo IH, et al. 2011. Adhesion activity of Lactobacillus plantarum PM 008 isolated from Kimchi on the intestine of mice. J. Bacteriol. Virol. 41: 83-90.   DOI
16 Kos B, Suskovic J, Vukovic S, Simpraga M, Frece J, Matosic S. 2003. Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92. J. Appl. Microbiol. 94: 981-987.   DOI
17 Lee KW, Park JY, Sa HD, Jeong JH, Jin DE, Heo HJ, et al. 2014. Probiotic properties of Pediococcus strains isolated from Jeotgals, salted and fermented Korean sea-food. Ananerobe 28: 199-206.   DOI
18 Lim SM, Jeong JJ, Jang SE, Han MJ, Kim DH. 2016. A mixture of the probiotic strains Bifidobacterium longum CH57 and Lactobacillus brevis CH23 ameliorates colitis in mice by inhibiting macrophage activation and restoring the Th17/Treg balance. J. Funct. Foods. 27: 295-309.   DOI
19 Kwon KH, Murakami A, Hayashi R, Ohigashi H. 2005. Interleukin-1beta targets interleukin-6 in progressing dextran sulfate sodium-induced experimental colitis. Biochem. Biophys. Res. Commun. 337: 647-654.   DOI
20 Ljungh A, Wadstrom T. 2006. Lactic acid bacteria as probiotics. Curr. Issues Intestinal Microbiol. 7: 73-90.
21 Saarela M, Mogensen G, Fonden R, Matto J, Mattila-Sandholm T. 2000. Probiotic bacteria: safety, functional and technological properties. J. Biotechnol. 84: 197-215.   DOI
22 Iyer SS, Cheng G. 2012. Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Crit. Rev. Immunol. 32: 23-63.   DOI
23 Fiorucci S, Mencarelli A, Palazzetti B, Sprague AG, Distrutti E, Morelli A, et al. 2002. Importance of innate immunity and collagen binding integrin alpha1beta1 in TNBS-induced colitis. Immunity 17: 769-780.   DOI
24 Neurath MF, Fuss I, Pasparakis M, Alexopoulou L, Haralambous S, Meyer zum Buschenfelde, KH, et al. 1997. Predominant pathogenic role of tumor necrosis factor in experimental colitis in mice. Eur. J. Immunol. 27: 1743-1750.   DOI
25 Fiorucci S, Mencarelli A, Palazzetti B, Distrutti E, Vergnolle N, Hollenberg MD, et al. 2001. Proteinase-activated receptor (PAR)-2 is an anti-inflammatory signal for colonic lamina propria lymphocytes in a mouse model of colitis. Proc. Natl. Acad. Sci. USA 98: 13936-13941.   DOI
26 Barens PJ, Karin M. 1997. Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N. Engl. J. Med. 336: 1066-1071.   DOI
27 Jang SE, Hyam SR, Jeong JJ, Han MJ, Kim DH. 2013. Penta-O-galloyl-${\beta}$-D-glucose ameliorates inflammation by inhibiting MyD88/$NF-{\kappa}B$ and MyD88/MAPK signalling pathways. Br. J. Pharmacol. 170: 1078-1091.   DOI
28 Collins T, Read MA, Neish AS, Whitley MZ, Thanos D, Maniatis T. 1995. Transcriptional regulation of endothelial cell adhesion molecules: $NF-{\kappa}B$ and cytokine inducible enhancers. FASEB. J. 9: 899-909.   DOI
29 Yu YR, Rodriguez JR. 2017. Clinical presentation of Crohn's, ulcerative colitis, and indeterminate colitis: symptoms, extraintestinal manifestations, and disease phenotypes. Semin. Pediatr. Surg. 26: 349-355.   DOI
30 Chami B, Martin NJJ, Dennis JM, Witting PK. 2018. Myeloperoxidase in the inflamed colon: a novel target for treating inflammatory bowel disease. Arch. Biochem. Biophys. 645: 61-71.   DOI
31 Neuman MG, Nanau RM. 2012. Inflammatory bowel disease: role of diet, microbiota, life style. Trans. Res. 160: 29-44.   DOI