• Title/Summary/Keyword: Nrf2 inhibitor

Search Result 72, Processing Time 0.029 seconds

Proteasome Inhibitor-Induced IκB/NF-κB Activation is Mediated by Nrf2-Dependent Light Chain 3B Induction in Lung Cancer Cells

  • Lee, Kyoung-Hee;Lee, Jungsil;Woo, Jisu;Lee, Chang-Hoon;Yoo, Chul-Gyu
    • Molecules and Cells
    • /
    • v.41 no.12
    • /
    • pp.1008-1015
    • /
    • 2018
  • $I{\kappa}B$, a cytoplasmic inhibitor of nuclear factor-${\kappa}B$ ($NF-{\kappa}B$), is reportedly degraded via the proteasome. However, we recently found that long-term incubation with proteasome inhibitors (PIs) such as PS-341 or MG132 induces $I{\kappa}B{\alpha}$ degradation via an alternative pathway, lysosome, which results in $NF-{\kappa}B$ activation and confers resistance to PI-induced lung cancer cell death. To enhance the anti-cancer efficacy of PIs, elucidation of the regulatory mechanism of PI-induced $I{\kappa}B{\alpha}$ degradation is necessary. Here, we demonstrated that PI up-regulates nuclear factor (erythroid-derived 2)-like 2 (Nrf2) via both de novo protein synthesis and Kelch-like ECH-associated protein 1 (KEAP1) degradation, which is responsible for $I{\kappa}B{\alpha}$ degradation via macroautophagy activation. PIs increased the protein level of light chain 3B (LC3B, macroautophagy marker), but not lysosome-associated membrane protein 2a (Lamp2a, the receptor for chaperone-mediated autophagy) in NCI-H157 and A549 lung cancer cells. Pretreatment with macroautophagy inhibitor or knock-down of LC3B blocked PI-induced $I{\kappa}B{\alpha}$ degradation. PIs up-regulated Nrf2 by increasing its transcription and mediating degradation of KEAP1 (cytoplasmic inhibitor of Nrf2). Overexpression of dominant-negative Nrf2, which lacks an N-terminal transactivating domain, or knock-down of Nrf2 suppressed PI-induced LC3B protein expression and subsequent $I{\kappa}B{\alpha}$ degradation. Thus, blocking of the Nrf2 pathway enhanced PI-induced cell death. These findings suggest that Nrf2-driven induction of LC3B plays an essential role in PI-induced activation of the $I{\kappa}B$/$NF-{\kappa}B$ pathway, which attenuates the anti-tumor efficacy of PIs.

Enhanced Sensitivity to Proteasome Inhibitor Bortezomib in Nrf2 Knockdown Ovarian Cancer Cells (Nrf2 영구 넉다운 난소암 세포주의 Proteasome 저해 항암제 Bortezomib에 대한 감수성 증가)

  • Lee, Sang-Hwan;Choi, Bo-Hyun;Kwak, Mi-Kyoung
    • YAKHAK HOEJI
    • /
    • v.55 no.6
    • /
    • pp.466-472
    • /
    • 2011
  • NF-E2-related factor 2 (Nrf2), a master regulator of antioxidant genes in animals, has been associated with the resistance of cancer cells to several cytotoxic chemotherapeutics. Bortezomib, a reversible inhibitor of the 26S proteasome, is a novel class anti-cancer therapeutics approved for the treatment of refractory multiple myeloma. However, the molecular mechanism of drug-resistance remains elusive. In the present study, bortezomib sensitivity has been investigated in Nrf2 knockdown ovarian cancer cells. When Nrf2 expression is stably repressed using interfering RNA expression, bortezomib-induced apoptosis and cell death were significantly enhanced compared to nonspecific RNA control cells. Knockdown cells showed elevated expression in the catalytic subunit PSMB5, PSMB6, and PSMB7 compared to the control, and failed to induce heme oxygenase-1 expression following bortezomib treatment. These indicate that differential proteasome levels and altered expression of stress-response genes could be underlying mechanisms of bortezomib sensitization in Nrf2-inhibited ovarian cancer cells.

Nrf2 Expression and Apoptosis in Quercetin-treated Malignant Mesothelioma Cells

  • Lee, Yoon-Jin;Lee, David M.;Lee, Sang-Han
    • Molecules and Cells
    • /
    • v.38 no.5
    • /
    • pp.416-425
    • /
    • 2015
  • NF-E2-related factor 2 (Nrf2), a basic leucine zipper transcription factor, has recently received a great deal of attention as an important molecule that enhances antioxidative defenses and induces resistance to chemotherapy or radiotherapy. In this study, we investigated the apoptosis-inducing and Nrf2- upregulating effects of quercetin on malignant mesothelioma (MM) MSTO-211H and H2452 cells. Quercetin treatment inhibited cell growth and led to upregulation of Nrf2 at both the mRNA and protein levels without altering the ubiquitination and extending the half-life of the Nrf2 protein. Following treatment with quercetin, analyses of the nuclear level of Nrf2, Nrf2 antioxidant response element-binding assay, Nrf2 promoter-luc assay, and RT-PCR toward the Nrf2-regulated gene, heme oxygenase-1, demonstrated that the induced Nrf2 is transcriptionally active. Knockdown of Nrf2 expression with siRNA enhanced cytotoxicity due to the induction of apoptosis, as evidenced by an increase in the level of proapoptotic Bax, a decrease in the level of antiapoptotic Bcl-2 with enhanced cleavage of caspase-3 and PARP proteins, the appearance of a sub-$G_0/G_1$ peak in the flow cytometric assay, and increased percentage of apoptotic propensities in the annexin V binding assay. Effective reversal of apoptosis was observed following pretreatment with the pan-caspase inhibitor Z-VAD. Moreover, Nrf2 knockdown exhibited increased sensitivity to the anticancer drug, cisplatin, presumably by potentiating the oxidative stress induced by cisplatin. Collectively, our data demonstrate the importance of Nrf2 in cytoprotection, survival, and drug resistance with implications for the potential significance of targeting Nrf2 as a promising strategy for overcoming resistance to chemotherapeutics in MM.

Ginsenoside F1 attenuates pirarubicin-induced cardiotoxicity by modulating Nrf2 and AKT/Bcl-2 signaling pathways

  • Yang Zhang;Jiulong Ma;Shan Liu;Chen Chen;Qi Li;Meng Qin;Liqun Ren
    • Journal of Ginseng Research
    • /
    • v.47 no.1
    • /
    • pp.106-116
    • /
    • 2023
  • Background: Pirarubicin (THP) is an anthracycline antibiotic used to treat various malignancies in humans. The clinical usefulness of THP is unfortunately limited by its dose-related cardiotoxicity. Ginsenoside F1 (GF1) is a metabolite formed when the ginsenosides Re and Rg1 are hydrolyzed. However, the protective effects and underlying mechanisms of GF1 on THP-induced cardiotoxicity remain unclear. Methods: We investigated the anti-apoptotic and anti-oxidative stress effects of GF1 on an in vitro model, using H9c2 cells stimulated by THP, plus trigonelline or AKT inhibitor imidazoquinoxaline (IMQ), as well as an in vivo model using THP-induced cardiotoxicity in rats. Using an enzyme-linked immunosorbent test, the levels of malondialdehyde (MDA), brain natriuretic peptide (BNP), creatine kinase (CK-MB), cardiac troponin (c-TnT), lactate dehydrogenase (LDH), superoxide dismutase (SOD) and glutathione (GSH) were determined. Nuclear factor (erythroid-derived2)-like 2 (Nrf2) and the expression of Nrf2 target genes, including heme oxygenase-1 (HO-1), glutathione-S-transferase (Gst), glutamate-cysteine ligase modifier subunit (GCLM), and expression levels of AKT/Bcl-2 signaling pathway proteins were detected using Western blot analysis. Results: THP-induced myocardial histopathological damage, electrocardiogram (ECG) abnormalities, and cardiac dysfunction were reduced in vivo by GF1. GF1 also decreased MDA, BNP, CK-MB, c-TnT, and LDH levels in the serum, while raising SOD and GSH levels. GF1 boosted Nrf2 nuclear translocation and Nrf2 target gene expression, including HO-1, Gst, and GCLM. Furthermore, GF1 regulated apoptosis by activating AKT/Bcl-2 signaling pathways. Employing Nrf2 inhibitor trigonelline and AKT inhibitor IMQ revealed that GF1 lacked antioxidant and anti-apoptotic effects. Conclusion: In conclusion, GF1 was found to alleviate THP-induced cardiotoxicity via modulating Nrf2 and AKT/Bcl-2 signaling pathways, ultimately alleviating myocardial oxidative stress and apoptosis.

Low-dose radiation activates Nrf1/2 through reactive species and the Ca2+/ERK1/2 signaling pathway in human skin fibroblast cells

  • Lee, Eun Kyeong;Kim, Jin-Ah;Park, Seong Joon;Kim, Jeung Ki;Heo, Kyu;Yang, Kwang Mo;Son, Tae Gen
    • BMB Reports
    • /
    • v.46 no.5
    • /
    • pp.258-263
    • /
    • 2013
  • In the current study, we explored the effect of LDR on the activation of Nrfs transcription factor involved in cellular redox events. Experiments were carried out utilizing 0.05 and 0.5 Gy X-ray irradiated normal human skin fibroblast HS27 cells. The results showed LDR induced Nrf1 and Nrf2 activation and expression of antioxidant genes HO-1, Mn-SOD, and NQO1. In particular, 0.05 Gy-irradiation increased only Nrf1 activation, but 0.5 Gy induced both Nrf1 and Nrf2 activation. LDR-mediated Nrf1/2 activation was accompanied by reactive species (RS) generation and $Ca^{2+}$ flux. This effect was abolished in the presence of N-acetyl-cysteine and BAPTA- AM. Furthermore, Nrf1/2 activation by LDR was suppressed by PD98059, an inhibitor of ERK1/2. In conclusion, LDR induces Nrf1 and Nrf2 activation and expression of Nrf-regulated antioxidant defense genes through RS and $Ca^{2+}$/ERK1/2 pathways, suggesting new insights into the molecular mechanism underlying the beneficial role of LDR in HS27 cells.

Nrf2 induces Ucp1 expression in adipocytes in response to β3-AR stimulation and enhances oxygen consumption in high-fat diet-fed obese mice

  • Chang, Seo-Hyuk;Jang, Jaeyool;Oh, Seungjun;Yoon, Jung-Hoon;Jo, Dong-Gyu;Yun, Ui Jeong;Park, Kye Won
    • BMB Reports
    • /
    • v.54 no.8
    • /
    • pp.419-424
    • /
    • 2021
  • Cold-induced norepinephrine activates β3-adrenergic receptors (β3-AR) to stimulate the kinase cascade and cAMP-response element-binding protein, leading to the induction of thermogenic gene expression including uncoupling protein 1 (Ucp1). Here, we showed that stimulation of the β3-AR by its agonists isoproterenol and CL316,243 in adipocytes increased the expression of Ucp1 and Heme Oxygenase 1 (Hmox1), the principal Nrf2 target gene, suggesting the functional interaction of Nrf2 with β3-AR signaling. The activation of Nrf2 by tert-butylhydroquinone and reactive oxygen species (ROS) production by glucose oxidase induced both Ucp1 and Hmox1 expression. The increased expression of Ucp1 and Hmox1 was significantly reduced in the presence of a Nrf2 chemical inhibitor or in Nrf2-deleted (knockout) adipocytes. Furthermore, Nrf2 directly activated the Ucp1 promoter, and this required DNA regions located at -3.7 and -2.0 kb of the transcription start site. The CL316,243-induced Ucp1 expression in adipocytes and oxygen consumption in obese mice were partly compromised in the absence of Nrf2 expression. These data provide additional insight into the role of Nrf2 in β3-AR-mediated Ucp1 expression and energy expenditure, further highlighting the utility of Nrf2-mediated thermogenic stimulation as a therapeutic approach to diet-induced obesity.

Lithium ameliorates rat spinal cord injury by suppressing glycogen synthase kinase-3β and activating heme oxygenase-1

  • Kim, Yonghoon;Kim, Jeongtae;Ahn, Meejung;Shin, Taekyun
    • Anatomy and Cell Biology
    • /
    • v.50 no.3
    • /
    • pp.207-213
    • /
    • 2017
  • Glycogen synthase kinase $(GSK)-3{\beta}$ and related enzymes are associated with various forms of neuroinflammation, including spinal cord injury (SCI). Our aim was to evaluate whether lithium, a non-selective inhibitor of $GSK-3{\beta}$, ameliorated SCI progression, and also to analyze whether lithium affected the expression levels of two representative $GSK-3{\beta}$-associated molecules, nuclear factor erythroid 2-related factor-2 (Nrf-2) and heme oxygenase-1 (HO-1) (a target gene of Nrf-2). Intraperitoneal lithium chloride (80 mg/kg/day for 3 days) significantly improved locomotor function at 8 days post-injury (DPI); this was maintained until 14 DPI (P<0.05). Western blotting showed significantly increased phosphorylation of $GSK-3{\beta}$ (Ser9), Nrf-2, and the Nrf-2 target HO-1 in the spinal cords of lithium-treated animals. Fewer neuropathological changes (e.g., hemorrhage, inflammatory cell infiltration, and tissue loss) were observed in the spinal cords of the lithium-treated group compared with the vehicle-treated group. Microglial activation (evaluated by measuring the immunoreactivity of ionized calcium-binding protein-1) was also significantly reduced in the lithium-treated group. These findings suggest that $GSK-3{\beta}$ becomes activated after SCI, and that a non-specific enzyme inhibitor, lithium, ameliorates rat SCI by increasing phosphorylation of $GSK-3{\beta}$ and the associated molecules Nrf-2 and HO-1.

High Levels of Hyaluronic Acid Synthase-2 Mediate NRF2-Driven Chemoresistance in Breast Cancer Cells

  • Choi, Bo-Hyun;Ryoo, Ingeun;Sim, Kyeong Hwa;Ahn, Hyeon-jin;Lee, Youn Ju;Kwak, Mi-Kyoung
    • Biomolecules & Therapeutics
    • /
    • v.30 no.4
    • /
    • pp.368-379
    • /
    • 2022
  • Hyaluronic acid (HA), a ligand of CD44, accumulates in some types of tumors and is responsible for tumor progression. The nuclear factor erythroid 2-like 2 (NRF2) regulates cytoprotective genes and drug transporters, which promotes therapy resistance in tumors. Previously, we showed that high levels of CD44 are associated with NRF2 activation in cancer stem like-cells. Herein, we demonstrate that HA production was increased in doxorubicin-resistant breast cancer MCF7 cells (MCF7-DR) via the upregulation of HA synthase-2 (HAS2). HA incubation increased NRF2, aldo-keto reductase 1C1 (AKR1C1), and multidrug resistance gene 1 (MDR1) levels. Silencing of HAS2 or CD44 suppressed NRF2 signaling in MCF7-DR, which was accompanied by increased doxorubicin sensitivity. The treatment with a HAS2 inhibitor, 4-methylumbelliferone (4-MU), decreased NRF2, AKR1C1, and MDR1 levels in MCF7-DR. Subsequently, 4-MU treatment inhibited sphere formation and doxorubicin resistance in MCF7-DR. The Cancer Genome Atlas (TCGA) data analysis across 32 types of tumors indicates the amplification of HAS2 gene is a common genetic alteration and is negatively correlated with the overall survival rate. In addition, high HAS2 mRNA levels are associated with increased NRF2 signaling and poor clinical outcome in breast cancer patients. Collectively, these indicate that HAS2 elevation contributes to chemoresistance and sphere formation capacity of drug-resistant MCF7 cells by activating CD44/NRF2 signaling, suggesting a potential benefit of HAS2 inhibition.

The Effect of Magnolol on UVB-induced Inflammation Damage Control via the Nrf2-SOCS3-Jak2-STAT3 Pathway in Human Dermal Fibroblasts (마그놀롤의 HDF세포에서 Nrf2-SOCS3-Jak2-STAT3에 의한 UVB 유래 염증데미지 조절)

  • Nam, Young sun;Ji, Juree
    • Journal of Life Science
    • /
    • v.30 no.10
    • /
    • pp.867-876
    • /
    • 2020
  • This study investigated the repair of UVB-induced cell damage by magnolol. We performed a drug-repurposing screen, and, in the STAT3 reporter gene assay, magnolol was identified as a suppressor of STAT3 that improves the cell viability of HDF cells. HDF cells treated with IL-6, UVB, and IFNγ showed the highest expression of Jak2 and phosphorylated STAT3 (p-STAT3), and magnolol was able to decrease the expression of Jak2 and p-STAT3 in UVB-induced cells. Moreover, UVB-damaged cell growth increased significantly in correlation with both reactivation and with magnolol in a dose-dependent manner. Compared with AG490 (a Jak2 inhibitor) treatment of UVB-treated HDF cells, cell proliferation increased significantly. We confirmed that AG490 and magnolol reduced TNF-α concentrations, and Western blotting (protein level) showed decreases in Jak2 and p-STAT3 expression in only the magnolol-treated cells. The expression of Jak2, p-STAT3, and SOCS3 also increased only after treatment with magnolol. Cells were treated with magnolol and ML385 (an NRF2 inhibitor), and these secondary metabolites reduced cell proliferation and NRF2 expression. The amount of MMP9 was also increased by cotreatment with magnolol and ML385. Collectively, these results demonstrate the potential of magnolol for repairing cells after UVB-induced damage by regulating the expression of NRF2, SOCS3, Jak2, and STAT3.

Synergistic inhibition of mesothelioma cell growth by the combination of clofarabine and resveratrol involves Nrf2 downregulation

  • Lee, Yoon-Jin;Im, Jae-Hyuk;Lee, David M.;Park, Ji-Sung;Won, Seong Youn;Cho, Moon-Kyun;Nam, Hae-Seon;Lee, Yong-Jin;Lee, Sang-Han
    • BMB Reports
    • /
    • v.45 no.11
    • /
    • pp.647-652
    • /
    • 2012
  • We previously reported that MSTO-211H cells have a higher capacity to regulate Nrf2 activation in response to changes in the cellular redox environment. To further characterize its biological significance, the response of Nrf2, a transcription factor that regulates ARE-containing genes, on the synergistic cytotoxic effect of clofarabine and resveratrol was investigated in mesothelioma cells. The combination treatment showed a marked growth-inhibitory effect, which was accompanied by suppression of Nrf2 activation and decreased expression of heme oxygenase-1 (HO-1). While transient overexpression of Nrf2 conferred protection against the cytotoxicity caused by their combination, knockdown of Nrf2 expression using siRNA enhanced their cytotoxic effect. Pretreatment with Ly294002, a PI3K inhibitor, augmented the decrease in HO-1 level by their combination, whereas no obvious changes were observed in Nrf2 levels. Altogether, these results suggest that the synergistic cytotoxic effect of clofarabine and resveratrol was mediated, at least in part, through suppression of Nrf2 signaling.