Browse > Article
http://dx.doi.org/10.5483/BMBRep.2013.46.5.199

Low-dose radiation activates Nrf1/2 through reactive species and the Ca2+/ERK1/2 signaling pathway in human skin fibroblast cells  

Lee, Eun Kyeong (Research Center, Dongnam Institute of Radiological and Medical Science)
Kim, Jin-Ah (Research Center, Dongnam Institute of Radiological and Medical Science)
Park, Seong Joon (Research Center, Dongnam Institute of Radiological and Medical Science)
Kim, Jeung Ki (Research Center, Dongnam Institute of Radiological and Medical Science)
Heo, Kyu (Research Center, Dongnam Institute of Radiological and Medical Science)
Yang, Kwang Mo (Research Center, Dongnam Institute of Radiological and Medical Science)
Son, Tae Gen (Research Center, Dongnam Institute of Radiological and Medical Science)
Publication Information
BMB Reports / v.46, no.5, 2013 , pp. 258-263 More about this Journal
Abstract
In the current study, we explored the effect of LDR on the activation of Nrfs transcription factor involved in cellular redox events. Experiments were carried out utilizing 0.05 and 0.5 Gy X-ray irradiated normal human skin fibroblast HS27 cells. The results showed LDR induced Nrf1 and Nrf2 activation and expression of antioxidant genes HO-1, Mn-SOD, and NQO1. In particular, 0.05 Gy-irradiation increased only Nrf1 activation, but 0.5 Gy induced both Nrf1 and Nrf2 activation. LDR-mediated Nrf1/2 activation was accompanied by reactive species (RS) generation and $Ca^{2+}$ flux. This effect was abolished in the presence of N-acetyl-cysteine and BAPTA- AM. Furthermore, Nrf1/2 activation by LDR was suppressed by PD98059, an inhibitor of ERK1/2. In conclusion, LDR induces Nrf1 and Nrf2 activation and expression of Nrf-regulated antioxidant defense genes through RS and $Ca^{2+}$/ERK1/2 pathways, suggesting new insights into the molecular mechanism underlying the beneficial role of LDR in HS27 cells.
Keywords
$Ca^{2+}$; ERK1/2; Nrf1/2; Reactive species; X-ray;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yamaoka, K., Kojima, S., Takahashi, M., Nomura, T. and Iriyama, K. (1998) Change of glutathione peroxidase synthesis along with that of superoxide dismutase synthesis in mice spleens after low-dose X-ray irradiation. Biochim. Biophys. Acta. 1381, 265-270.   DOI   ScienceOn
2 Raaphorst, G. P. and Boyden, S. (1999) Adaptive response and its variation in human normal and tumour cells. Int. J. Radiat. Biol. 75, 865-873.   DOI
3 Kim, C. S., Kim, J. M., Nam, S. Y., Yang, K. H., Jeong, M., Kim, H. S., Lim, Y. K., Kim, C. S., Jin, Y. W. and Kim, J. (2007) Low-dose of ionizing radiation enhances cell proliferation via transient ERK1/2 and p38 activation in normal human lung fibroblasts. J. Radiat. Res. 48, 407-415.   DOI   ScienceOn
4 Keum, Y. S., Jeong, W. S. and Kong, A. N. (2004) Chemoprevention by isothiocyanates and their underlying molecular signaling mechanisms. Mutat. Res. 555, 191-202.   DOI   ScienceOn
5 Korystov, Y. N., Shaposhnikova, V. V., Korystova, A. F. and Emel'yanov, M. O. (2007) Detection of reactive oxygen species induced by radiation in cells using the dichlorofluorescein assay. Radiat. Res. 168, 226-232.   DOI   ScienceOn
6 Gori, T. and Münzel, T. (2012) Biological effects of low-dose radiation: of harm and hormesis. Eur. Heart J. 33, 292-295.   DOI
7 Kobayashi, M. and Yamamoto, M. (2005) Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation. Antioxid. Redox Signal. 7, 385-394.   DOI   ScienceOn
8 Kaspar, J. W., Niture, S. K. and Jaiswal, A. K. (2009) Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radic. Biol. Med. 47, 1304-1309.   DOI   ScienceOn
9 Tsukimoto, M., Tamaishi, N., Homma, T. and Kojima, S. (2010) Low-dose gamma-ray irradiation induces translocation of Nrf2 into nuclear in mouse macrophage RAW264.7 cells. J. Radiat. Res. (Tokyo). 51, 349-353.   DOI   ScienceOn
10 Corre, I., Niaudet, C. and Paris, F. (2010) Plasma membrane signaling induced by ionizing radiation. Mutat. Res. 704, 61-67.   DOI   ScienceOn
11 Kim, A. N., Jeon, W. K., Lee, J. J. and Kim, B. C. (2010) Up-regulation of heme oxygenase-1 expression through CaMKII- RK1/2-Nrf2 signaling mediates the anti-inflammatory effect of bisdemethoxycurcumin in LPS-stimulated macrophages. Free Radic. Biol. Med. 49, 323-331.   DOI   ScienceOn
12 Liang, X., So, Y. H., Cui, J., Ma, K., Xu, X., Zhao, Y., Cai, L. and Li, W. (2011) The low-dose ionizing radiation stimulates cell proliferation via activation of the MAPK/ERK pathway in rat cultured mesenchymal stem cells. J. Radiat. Res. (Tokyo). 52, 380-386.   DOI   ScienceOn
13 Ahmed, K. M., Nantajit, D., Fan, M., Murley, J. S., Grdina, D. J. and Li, J. J. (2009) Coactivation of ATM/ERK/ NFkappaB in the low-dose radiation-induced radioadaptive response in human skin keratinocytes. Free Radic. Biol. Med. 46, 1543-1550.   DOI   ScienceOn
14 Moskalev, A. A., Plyusnina, E. N. and Shaposhnikov, M. V. (2011) Radiation hormesis and radioadaptive response in Drosophila melanogaster flies with different genetic backgrounds: the role of cellular stress-resistance mechanisms. Biogerontology 12, 253-263.   DOI   ScienceOn
15 Seong, K. M., Kim, C. S., Seo, S. W., Jeon, H. Y., Lee, B. S, Nam, S. Y., Yang, K. H., Kim, J. Y., Kim, C. S., Min, K. J. and Jin, Y. W. (2011) Genome-wide analysis of low-dose irradiated male Drosophila melanogaster with extended longevity. Biogerontology 12, 93-107.   DOI   ScienceOn
16 Ina, Y. and Sakai, K. (2005) Activation of immunological network by chronic low-dose-rate irradiation in wild-type mouse strains: analysis of immune cell populations and surface molecules. Int. J. Radiat. Biol. 81, 721-729.   DOI   ScienceOn
17 Xu, C., Yuan, X., Pan, Z., Shen, G., Kim, J. H., Yu, S., Khor, T. O., Li, W., Ma, J. and Kong, A. N. (2006) Mechanism of action of isothiocyanates: the induction of ARE-regulated genes is associated with activation of ERK and JNK and the phosphorylation and nuclear translocation of Nrf2. Mol. Cancer Ther. 5, 1918-1926.   DOI   ScienceOn
18 Hashimoto, S., Shirato, H., Hosokawa, M., Nishioka, T., Kuramitsu, Y., Matushita, K., Kobayashi, M. and Miyasaka, K. (1999) The suppression of metastases and the change in host immune response after low-dose total-body irradiation in tumor-bearing rats. Radiat. Res. 151, 717-724.   DOI
19 Takahashi, M., Kojima, S., Yamaoka, K. and Niki, E. (2000) Prevention of type I diabetes by low-dose gamma irradiation in NOD mice. Radiat. Res. 154, 680-685.   DOI   ScienceOn
20 Rödel, F., Hantschel, M., Hildebrandt, G., Schultze-Mosgau, S., Rödel, C., Herrmann, M., Sauer, R. and Voll, R. E. (2004) Dose-dependent biphasic induction and transcriptional activity of nuclear factor kappa B (NF-kappaB) in EA.hy.926 endothelial cells after low-dose X-irradiation. Int. J. Radiat. Biol. 80, 115-232.   DOI   ScienceOn
21 Ohtsuji, M., Katsuoka, F., Kobayashi, A., Aburatani, H., Hayes, J. D. and Yamamoto, M. (2008) Nrf1 and Nrf2 play distinct roles in activation of antioxidant response element- dependent genes. J. Biol. Chem. 283, 33554-33562.   DOI   ScienceOn
22 Kojima, S., Matsuki, O., Nomura, T., Yamaoka, K., Takahashi, M. and Niki, E. (1999) Elevation of antioxidant potency in the brain of mice by low-dose gamma-ray irradiation and its effect on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced brain damage. Free Radic. Biol. Med. 26, 388-395.   DOI   ScienceOn
23 Zhang, Q., Pi, J., Woods, C. G. and Andersen, M. E. (2010) A systems biology perspective on Nrf2-mediated antioxidant response. Toxicol. Appl. Pharmacol. 244, 84-97.   DOI   ScienceOn
24 Kawakita, Y., Ikekita, M., Kurozumi, R. and Kojima, S. (2003) Increase of intracellular glutathione by low-dose gamma-ray irradiation is mediated by transcription factor AP-1 in RAW 264.7 cells. Biol. Pharm. Bull. 26, 19-23.   DOI   ScienceOn