• 제목/요약/키워드: Nrf2/HO-1

검색결과 208건 처리시간 0.031초

RhGLP-1 (7-36) protects diabetic rats against cerebral ischemia-reperfusion injury via up-regulating expression of Nrf2/HO-1 and increasing the activities of SOD

  • Fang, Yi;Liu, Xiaofang;Zhao, Libo;Wei, Zhongna;Jiang, Daoli;Shao, Hua;Zang, Yannan;Xu, Jia;Wang, Qian;Liu, Yang;Peng, Ye;Yin, Xiaoxing
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권5호
    • /
    • pp.475-485
    • /
    • 2017
  • The present study aimed to explore the neuroprotective effect and possible mechanisms of rhGLP-1 (7-36) against transient ischemia/reperfusion injuries induced by middle cerebral artery occlusion (MCAO) in type 2 diabetic rats. First, diabetic rats were established by a combination of a high-fat diet and low-dose streptozotocin (STZ) (30 mg/kg, intraperitoneally). Second, they were subjected to MCAO for 2 h, then treated with rhGLP-1 (7-36) (10, 20, $40{\mu}g/kg$ i.p.) at the same time of reperfusion. In the following 3 days, they were injected with rhGLP-1 (7-36) at the same dose and route for three times each day. After 72 h, hypoglycemic effects were assessed by blood glucose changes, and neuroprotective effects were evaluated by neurological deficits, infarct volume and histomorphology. Mechanisms were investigated by detecting the distribution and expression of the nuclear factor erythroid-derived factor 2 related factor 2 (Nrf2) in ischemic brain tissue, the levels of phospho-PI3 kinase (PI3K)/PI3K ratio and heme-oxygenase-1 (HO-l), as well as the activities of superoxide dismutase (SOD) and the contents of malondialdehyde (MDA). Our results showed that rhGLP-1 (7-36) significantly reduced blood glucose and infarction volume, alleviated neurological deficits, enhanced the density of surviving neurons and vascular proliferation. The nuclear positive cells ratio and expression of Nrf2, the levels of P-PI3K/PI3K ratio and HO-l increased, the activities of SOD increased and the contents of MDA decreased. The current results indicated the protective effect of rhGLP-1 (7-36) in diabetic rats following MCAO/R that may be concerned with reducing blood glucose, up-regulating expression of Nrf2/HO-1 and increasing the activities of SOD.

Heme Oxygenase-1 발현과 NO 생성에 미치는 Achyranthoside C Dimethyl Ester의 효과 (Effects of Achyranthoside C Dimethyl Ester on Heme Oxygenase-1 Expression and NO Production)

  • 방수영;송지수;문형인;김영희
    • 생명과학회지
    • /
    • 제25권9호
    • /
    • pp.976-983
    • /
    • 2015
  • Achyranthoside C dimethyl ester (ACDE)는 우슬에서 분리한 oleanolic acid glycoside이다. 본 연구에서는 RAW264.7 대식세포에서 ACDE의 항염증 효과를 관찰하고 그 작용 기전을 연구하였다. ACDE는 세포에 독성을 유도하지 않으면서 heme oxygenase-1 (HO-1)의 발현을 유도하였다. ACDE 는 HO-1의 발현에 관여하는 전사인자인 nuclear factor E2-related factor 2 (Nrf2)를 핵으로 이동시켰다. 또한 ACDE에 의한 HO-1의 발현은 phosphatidylinositol 3-kinase (PI-3K) 및 mitogen activated protein kinases (MAPK) 억제제에 의해 감소되었으며, ACDE가 Akt, c-Jun kinase (JNK), extracellular signal regulated kinase (ERK), p38 kinase의 인산화를 유도하였다. 한편 ACDE는 lipopolysaccharide (LPS)로 인한 nitric oxide (NO)의 생성과 inducible NO synthase (iNOS) 발현을 억제하였으며 HO-1 siRNA를 처리했을 때 ACDE가 iNOS의 발현을 억제하지 못하였다. 이상의 결과를 종합해보면, ACDE는 대식세포에서 PI3K/Akt 및 MAPK와 Nrf2 신호전달과정을 통해 HO-1의 발현을 유도함으로써 NO와 같은 염증매개물질의 생성을 억제한다는 것을 알 수 있다. 이러한 연구결과는 ACDE가 항염증제로 사용될 수 있음을 시사한다.

Antioxidant mechanism of black garlic extract involving nuclear factor erythroid 2-like factor 2 pathway

  • Ha, Ae Wha;Kim, Woo Kyoung
    • Nutrition Research and Practice
    • /
    • 제11권3호
    • /
    • pp.206-213
    • /
    • 2017
  • BACKGROUN/OBJECTIVES: Although studies have revealed that black garlic is a potent antioxidant, its antioxidant mechanism remains unclear. The objective of this study was to determine black garlic's antioxidant activities and possible antioxidant mechanisms related to nuclear factor erythroid 2-like factor 2 (Nrf2)-Keap1 complex. METHODS/MATERIALS: After four weeks of feeding rats with a normal fat diet (NF), a high-fat diet (HF), a high-fat diet with 0.5% black garlic extract (HF+BGE 0.5), a high-fat diet with 1.0% black garlic extract (HF+BGE 1.0), or a high-fat diet with 1.5% black garlic extract (HF+BGE 1.5), plasma concentrations of glucose, insulin,homeostatic model assessment of insulin resistance (HOMA-IR) were determined. As oxidative stress indices, plasma concentrations of thiobarbituric acid reactive substances (TBARS) and 8-isoprostaglandin $F2{\alpha}$ (8-iso-PGF) were determined. To measure antioxidant capacities, plasma total antioxidant capacity (TAC) and activities of antioxidant enzymes in plasma and liver were determined. The mRNA expression levels of antioxidant related proteins such as Nrf2, NAD(P)H: quinone-oxidoreductase-1 (NQO1), heme oxygenase-1 (HO-1), glutathione reductase (GR), and glutathione S-transferase alpha 2 (GSTA2) were examined. RESULTS: Plasma glucose level, plasma insulin level, and HOMA-IR in black garlic supplemented groups were significantly (P < 0.05) lower than those in the HF group without dose-dependent effect. Plasma TBARS concentration and TAC in the HF+BGE 1.5 group were significantly decreased compared to those of the HF group. The activities of catalase and glutathione peroxidase were significantly (P < 0.05) increased in the HF+BGE 1.0 and HF+BGE 1.5 groups compared to those of the HF group. The mRNA expression levels of hepatic Nrf2, NQO1, HO-1, and GSTA2 were significantly (P < 0.05) increased in the HF with BGE groups compared to those in the HF group. CONCLUSIONS: The improvements of blood glucose homeostasis and antioxidant systems in rats fed with black garlic extract were related to mRNA expression levels of Nrf2 related genes.

Diosmetin Alleviates Lipopolysaccharide-Induced Acute Lung Injury through Activating the Nrf2 Pathway and Inhibiting the NLRP3 Inflammasome

  • Liu, Qinmei;Ci, Xinxin;Wen, Zhongmei;Peng, Liping
    • Biomolecules & Therapeutics
    • /
    • 제26권2호
    • /
    • pp.157-166
    • /
    • 2018
  • Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a common clinical syndrome of diffuse lung inflammation with high mortality rates and limited therapeutic methods. Diosmetin, an active component from Chinese herbs, has long been noticed because of its antioxidant and anti-inflammatory activities. The aim of this study was to evaluate the effects of diosmetin on LPS-induced ALI model and unveil the possible mechanisms. Our results revealed that pretreatment with diosmetin effectively alleviated lung histopathological changes, which were further evaluated by lung injury scores. Diosmetin also decreased lung wet/dry ratios, as well as total protein levels, inflammatory cell infiltration and proinflammatory cytokine (eg. $TNF-{\alpha}$, $IL-1{\beta}$ and IL-6) overproduction in bronchoalveolar lavage fluid (BALF). Additionally, increased MPO, MDA and ROS levels induced by LPS were also markly suppressed by diosmetin. Furthermore, diosmetin significantly increased the expression of Nrf2 along with its target gene HO-1 and blocked the activation of NLRP3 inflammasome in the lung tissues, which might be central to the protective effects of diosmetin. Further supporting these results, in vitro experiments also showed that diosmetin activated Nrf2 and HO-1, as well as inhibited the NLRP3 inflammasome in both RAW264.7 and A549 cells. The present study highlights the protective effects of diosmetin on LPS-induced ALI via activation of Nrf2 and inhibition of NLRP3 inflammasome, bringing up the hope of its application as a therapeutic drug towards LPS-induced ALI.

Methanol extract of Myelophycus caespitosus ameliorates oxidative stress-induced cytotoxicity in C2C12 murine myoblasts via activation of heme oxygenase-1

  • Cheol Park;Hyun Hwangbo;Min Ho Han;Jin-Woo Jeong;Suengmok Cho;Gi-Young Kim;Hye-Jin Hwang;Yung Hyun Choi
    • Fisheries and Aquatic Sciences
    • /
    • 제26권1호
    • /
    • pp.35-47
    • /
    • 2023
  • Myelophycus caespitosus, a brown alga belonging to genus Myelophycus, has been traditionally used as a food and medicinal resource in Northeastern Asia. However, few studies have been conducted on its pharmacological activity. In this study, we evaluated whether methanol extract of M. caespitosus (MEMC) could protect against oxidative damage caused by hydrogen peroxide (H2O2) in C2C12 murine myoblasts. Our results revealed that MEMC could suppress H2O2-induced growth inhibition and DNA damage while blocking the production of reactive oxygen species. In H2O2-treated cells, cell cycle progression was halted at the G2/M phase, accompanied by changes in expression of key cell cycle regulators. However, these effects were attenuated by MEMC. In addition, we found that MEMC protected cells from induction of apoptosis associated with mitochondrial impairment caused by H2O2 treatment. Furthermore, MEMC enhanced the phosphorylation of nuclear factor-erythroid-2 related factor 2 (Nrf2) and expression and activity of heme oxygenase-1 (HO-1) in H2O2-treaetd C2C12 myoblasts. However, such anti-apoptotic and cytoprotective effects of MEMC were greatly abolished by HO-1 inhibitor, suggesting that MEMC could increase Nrf2-mediated activity of HO-1 to protect C2C12 myoblasts from oxidative stress.

Induction of Heme Oxygenase-1 By 15-Deoxy-Delta12,14-Prostaglandin J2 Is Mediated Through Activation of Transcription Factor Nrf2 in Mcf-7 Cells

  • Kim, Eun-Hee;Surh, Young-Joon
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2003년도 추계학술대회
    • /
    • pp.180-180
    • /
    • 2003
  • Peroxisome proliferator-activated receptor gamma (PPAR-gamma), a member of the nuclear hormone receptor superfamily, is involved in the suppression of growth of several types of tumors such as liposarcoma, cancers of breast, prostate, and colon, possibly through induction of cell cycle arrest and/or apoptosis.(omitted)

  • PDF

Anthocyanins from Hibiscus syriacus L. Inhibit Oxidative Stress-mediated Apoptosis by Activating the Nrf2/HO-1 Signaling Pathway

  • Molagoda, Ilandarage Menu Neelaka;Karunarathne, Wisurumuni Arachchilage Hasitha Maduranga;Lee, Kyoung Tae;Choi, Yung Hyun;Jayasooriya, Rajapaksha Gedara Prasad Tharanga;Kim, Gi-Young
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2019년도 추계학술대회
    • /
    • pp.91-91
    • /
    • 2019
  • Hibiscus syriacus L. is widely distributed throughout Eastern and Southern Asia and its root bark has been used as a traditional remedy. Recently, the extracts of H. syriacus L. exerts anti-cancerous, anti-microbial, and anti-inflammatory activities. However, the effect of anthocyanin-rich fraction of H. syriacus L. petals (PS) has not been studied under excessive oxidative stress. In this study, we evaluated the cellular protective effect of PS in HaCaT human skin keratinocytes under hydrogen peroxide ($H_2O_2$)-induced oxidative stress conditions. PS at below $400{\mu}g/ml$ did not show any cell death; however, over $800{\mu}g/ml$ of PS gradually increased cell death. PS at below $400{\mu}g/ml$ significantly inhibited $H_2O_2$-induced apoptosis in HaCaT cells concomitant with downregulation of Bax and upregulation of pro-PARP and p-Bcl-2. Additionally, PS remarkably reversed $H_2O_2$-induced excessive reactive oxygen species (ROS) production and apoptosis, and also significantly inhibited mitochondrial ROS production concomitant with suppression of $H_2O_2$-induced mitochondrial depolarization. $H_2O_2$-mediated ratio of Bax to Bcl-2, and caspase-3 activation were markedly abolished in the presence of PS. Moreover, the inhibition of HO-1 function using zinc protoporphyrin, an HO-1 inhibitor, significantly attenuated the cellular protective effects of PS against $H_2O_2$, indicating the significance of HO-1 in PS mediated cytoprotective effect, which was mediated by activating nuclear factor erythroid 2-related factor-2 (Nrf2). Taken together, our results suggest that cytoprotective effect of PS in HaCaT keratinocytes against oxidative stress-induced apoptosis is mediated by inhibiting cellular and mitochondrial ROS production, which is downregulated by activating Nrf2/HO-1 axis.

  • PDF

Involvement of Estrogen Receptor-α in the Activation of Nrf2-Antioxidative Signaling Pathways by Silibinin in Pancreatic β-Cells

  • Chu, Chun;Gao, Xiang;Li, Xiang;Zhang, Xiaoying;Ma, Ruixin;Jia, Ying;Li, Dahong;Wang, Dongkai;Xu, Fanxing
    • Biomolecules & Therapeutics
    • /
    • 제28권2호
    • /
    • pp.163-171
    • /
    • 2020
  • Silibinin exhibits antidiabetic potential by preserving the mass and function of pancreatic β-cells through up-regulation of estrogen receptor-α (ERα) expression. However, the underlying protective mechanism of silibinin in pancreatic β-cells is still unclear. In the current study, we sought to determine whether ERα acts as the target of silibinin for the modulation of antioxidative response in pancreatic β-cells under high glucose and high fat conditions. Our in vivo study revealed that a 4-week oral administration of silibinin (100 mg/kg/day) decreased fasting blood glucose with a concurrent increase in levels of serum insulin in high-fat diet/streptozotocin-induced type 2 diabetic rats. Moreover, expression of ERα, NF-E2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) in pancreatic β-cells in pancreatic islets was increased by silibinin treatment. Accordingly, silibinin (10 μM) elevated viability, insulin biosynthesis, and insulin secretion of high glucose/palmitate-treated INS-1 cells accompanied by increased expression of ERα, Nrf2, and HO-1 as well as decreased reactive oxygen species production in vitro. Treatment using an ERα antagonist (MPP) in INS-1 cells or silencing ERα expression in INS-1 and NIT-1 cells with siRNA abolished the protective effects of silibinin. Our study suggests that silibinin activates the Nrf2-antioxidative pathways in pancreatic β-cells through regulation of ERα expression.

Anti-inflammatory effect of Lonicera caerulea through ATF3 and Nrf2/HO-1 Activation in LPS-stimulated RAW264.7 Cells

  • Kim, Ha Na;Park, Su Bin;Kim, Jeong Dong;Jeong, Jin Boo
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2019년도 추계학술대회
    • /
    • pp.65-65
    • /
    • 2019
  • In this study, we evaluated the anti-inflammatory effect of extracts of leaves (LCLE) and branches (LCBE) from L. caerulea in LPS-stimulated RAW264.7 cells. Inhibitory effect of LCLE and LCBE against LPS-induced overproduction of NO, iNOS and $IL-1{\beta}$ was higher than LCFE. Furthermore, LCLE and LCBE significantly inhibited the overexpression of COX-2, IL-6 and $TNF-{\alpha}$ in LPS-stimulated RAW264.7 cells. LCLE and LCBE did not inhibited LPS-induced degradation of $I{\kappa}B-{\alpha}$, but blocked the nuclear accumulation of p65. LCLE did not inhibited LPS-induced phosphorylation of ERK1/2 and p38, while LCBE significantly attenuated phosphorylation level of p38. LCLE and LCBE increased HO-1 protein level and decrease of iNOS and $IL-1{\beta}$ expression by LCLE and LCBE was inhibited by HO-1 knockdown. The inhibition of p38 by SB203580 and ROS by NAC blocked HO-1 expression by LCLE and LCBE. LCLE and LCBE increased p38 phosphorylation and the inhibition of ROS by NAC blocked p38 phosphorylation LCLE and LCBE. LCLE and LCBE induced nuclear accumulation of Nrf2, but this was significantly reversed by the inhibition of p38 and ROS. In addition, LCLE and LCBE increased ATF3 expression and decrease of iNOS and $IL-1{\beta}$ expression by LCLE and LCBE was inhibited by ATF3 knockdown. Collectively, LCLE and LCBE inhibited LPS-induced $NF-{\kappa}B$ activation by blocking p65 nuclear accumulation, increased HO-1 expression by ROS/p38/Nrf2 activation, and increased ATF3 expression. Furthermore, LCBE inhibited LPS-induced p38 phosphorylation.

  • PDF

Anti-neuroinflammatory Effects of 12-Dehydrogingerdione in LPS-Activated Microglia through Inhibiting Akt/IKK/NF-κB Pathway and Activating Nrf-2/HO-1 Pathway

  • Zhao, Dong;Gu, Ming-Yao;Xu, Jiu Liang;Zhang, Li Jun;Ryu, Shi Yong;Yang, Hyun Ok
    • Biomolecules & Therapeutics
    • /
    • 제27권1호
    • /
    • pp.92-100
    • /
    • 2019
  • Ginger, one of worldwide consumed dietary spice, is not only famous as food supplements, but also believed to exert a variety of remarkable pharmacological activity as herbal remedies. In this study, a ginger constituent, 12-dehydrogingerdione (DHGD) was proven that has comparable anti-inflammatory activity with positive control 6-shogaol in inhibiting LPS-induced interleukin (IL)-6, tumor necrosis factor $(TNF)-{\alpha}$, prostaglandin (PG) $E_2$, nitric oxide (NO), inducible NO synthase (iNOS) and cyclooxygenase (COX)-2, without interfering with COX-1 in cultured microglial cells. Subsequent mechanistic studies indicate that 12-DHGD may inhibit neuro-inflammation through suppressing the LPS-activated $Akt/IKK/NF-{\kappa}B$ pathway. Furthermore, 12-DHGD markedly promoted the activation of NF-E2-related factor (Nrf)-2 and heme oxygenase (HO)-1, and we demonstrated that the involvement of HO-1 on the production of pro-inflammatory mediators such as NO and $TNF-{\alpha}$ by using a HO-1 inhibitor, Zinc protoporphyrin (Znpp). These results indicate that 12-DHGD may protect against neuro-inflammation by inhibiting $Akt/IKK/I{\kappa}B/NF-{\kappa}B$ pathway and promoting Nrf-2/HO-1 pathway.