DOI QR코드

DOI QR Code

Diosmetin Alleviates Lipopolysaccharide-Induced Acute Lung Injury through Activating the Nrf2 Pathway and Inhibiting the NLRP3 Inflammasome

  • Liu, Qinmei (Department of Respiration, The First Hospital, Jilin University) ;
  • Ci, Xinxin (Institute of Translational Medicine, The First Hospital, Jilin University) ;
  • Wen, Zhongmei (Department of Respiration, The First Hospital, Jilin University) ;
  • Peng, Liping (Department of Respiration, The First Hospital, Jilin University)
  • Received : 2016.10.20
  • Accepted : 2017.01.25
  • Published : 2018.03.01

Abstract

Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a common clinical syndrome of diffuse lung inflammation with high mortality rates and limited therapeutic methods. Diosmetin, an active component from Chinese herbs, has long been noticed because of its antioxidant and anti-inflammatory activities. The aim of this study was to evaluate the effects of diosmetin on LPS-induced ALI model and unveil the possible mechanisms. Our results revealed that pretreatment with diosmetin effectively alleviated lung histopathological changes, which were further evaluated by lung injury scores. Diosmetin also decreased lung wet/dry ratios, as well as total protein levels, inflammatory cell infiltration and proinflammatory cytokine (eg. $TNF-{\alpha}$, $IL-1{\beta}$ and IL-6) overproduction in bronchoalveolar lavage fluid (BALF). Additionally, increased MPO, MDA and ROS levels induced by LPS were also markly suppressed by diosmetin. Furthermore, diosmetin significantly increased the expression of Nrf2 along with its target gene HO-1 and blocked the activation of NLRP3 inflammasome in the lung tissues, which might be central to the protective effects of diosmetin. Further supporting these results, in vitro experiments also showed that diosmetin activated Nrf2 and HO-1, as well as inhibited the NLRP3 inflammasome in both RAW264.7 and A549 cells. The present study highlights the protective effects of diosmetin on LPS-induced ALI via activation of Nrf2 and inhibition of NLRP3 inflammasome, bringing up the hope of its application as a therapeutic drug towards LPS-induced ALI.

Keywords

References

  1. Alam, J., Stewart, D., Touchard, C., Boinapally, S., Choi, A. M. and Cook, J. L. (1999) Nrf2, a Cap'n'Collar transcription factor, regulates induction of the heme oxygenase-1 gene. J. Biol. Chem. 274, 26071-26078. https://doi.org/10.1074/jbc.274.37.26071
  2. Androutsopoulos, V. P., Mahale, S., Arroo, R. R. and Potter, G. (2009) Anticancer effects of the flavonoid diosmetin on cell cycle progression and proliferation of MDA-MB 468 breast cancer cells due to CYP1 activation. Oncol. Rep. 21, 1525-1528.
  3. Baetz, D., Shaw, J. and Kirshenbaum, L. A. (2005) Nuclear factor-${\kappa}B$ decoys suppress endotoxin-induced lung injury. Mol. Pharmacol. 67, 977-979. https://doi.org/10.1124/mol.105.011296
  4. Boaru, S. G., Borkham-Kamphorst, E., Van de Leur, E., Lehnen, E., Liedtke, C. and Weiskirchen, R. (2015) NLRP3 inflammasome expression is driven by NF-${\kappa}B$ in cultured hepatocytes. Biochem. Biophys. Res. Commun. 458, 700-706. https://doi.org/10.1016/j.bbrc.2015.02.029
  5. Chabot, F., Mitchell, J. A., Gutteridge, J. M. and Evans, T. W. (1998) Reactive oxygen species in acute lung injury. Eur. Respir. J. 11, 745-757.
  6. Chan, B. C., Ip, M., Gong, H., Lui, S. L., See, R. H., Jolivalt, C., Fung, K. P., Leung, P. C., Reiner, N. E. and Lau, C. B. (2013) Synergistic effects of diosmetin with erythromycin against ABC transporter over-expressed methicillin-resistant Staphylococcus aureus (MRSA) RN4220/pUL5054 and inhibition of MRSA pyruvate kinase. Phytomedicine 20, 611-614. https://doi.org/10.1016/j.phymed.2013.02.007
  7. Chen, X. J., Zhang, B., Hou, S. J., Shi, Y., Xu, D. Q., Wang, Y. X., Liu, M. L., Dong, H. Y., Sun, R. H., Bao, N. D., Jin, F. G. and Li, Z. C. (2013) Osthole improves acute lung injury in mice by up-regulating Nrf-2/thioredoxin 1. Respir. Physiol. Neurobiol. 188, 214-222. https://doi.org/10.1016/j.resp.2013.04.014
  8. Cross, L. J. and Matthay, M. A. (2011) Biomarkers in acute lung injury: insights into the pathogenesis of acute lung injury. Crit. Care Clin. 27, 355-377. https://doi.org/10.1016/j.ccc.2010.12.005
  9. Goodman, R. B., Pugin, J., Lee, J. S. and Matthay, M. A. (2003) Cytokine-mediated inflammation in acute lung injury. Cytokine Growth Factor Rev. 14, 523-535. https://doi.org/10.1016/S1359-6101(03)00059-5
  10. Grailer, J. J., Canning, B. A., Kalbitz, M., Haggadone, M. D., Dhond, R. M., Andjelkovic, A. V., Zetoune, F. S. and Ward, P. A. (2014) Critical role for the NLRP3 inflammasome during acute lung injury. J. Immunol. 192, 5974-5983. https://doi.org/10.4049/jimmunol.1400368
  11. Grommes, J. and Soehnlein, O. (2011) Contribution of neutrophils to acute lung injury. Mol. Med. 17, 293-307.
  12. Joo Choi, R., Cheng, M. S. and Kim, Y. S. (2014) Desoxyrhapontigenin up-regulates Nrf2-mediated heme oxygenase-1 expression in macrophages and inflammatory lung injury. Redox Biol. 2, 504-512. https://doi.org/10.1016/j.redox.2014.02.001
  13. Kim, S. J. and Lee, S. M. (2013) NLRP3 inflammasome activation in D-galactosamine and lipopolysaccharide-induced acute liver failure: role of heme oxygenase-1. Free Radic. Biol. Med. 65, 997-1004. https://doi.org/10.1016/j.freeradbiomed.2013.08.178
  14. Kim, W. Y. and Hong, S. B. (2016) Sepsis and acute respiratory distress syndrome: recent update. Tuberc. Respir. Dis. (Seoul) 79, 53-57.
  15. Kisic, B., Miric, D., Dragojevic, I., Rasic, J. and Popovic, L. (2016) Role of myeloperoxidase in patients with chronic kidney disease. Oxid. Med. Cell. Longev. 2016, 1069743.
  16. Klebanoff, S. J. (2005) Myeloperoxidase: friend and foe. J. Leukoc. Biol. 77, 598-625. https://doi.org/10.1189/jlb.1204697
  17. Liao, W., Ning, Z., Chen, L., Wei, Q., Yuan, E., Yang, J. and Ren, J. (2014) Intracellular antioxidant detoxifying effects of diosmetin on 2,2-azobis(2-amidinopropane) dihydrochloride (AAPH)-induced oxidative stress through inhibition of reactive oxygen species generation. J. Agric. Food Chem. 62, 8648-8654. https://doi.org/10.1021/jf502359x
  18. Luo, Y. P., Jiang, L., Kang, K., Fei, D. S., Meng, X. L., Nan, C. C., Pan, S. H., Zhao, M. R. and Zhao, M. Y. (2014) Hemin inhibits NLRP3 inflammasome activation in sepsis-induced acute lung injury, involving heme oxygenase-1. Int. Immunopharmacol. 20, 24-32.
  19. Lykens, M. G., Davis, W. B. and Pacht, E. R. (1992) Antioxidant activity of bronchoalveolar lavage fluid in the adult respiratory distress syndrome. Am. J. Physiol. 262, L169-L175.
  20. Matute-Bello, G., Frevert, C. W. and Martin, T. R. (2008) Animal models of acute lung injury. Am. J. Physiol. Lung Cell Mol. Physiol. 295, L379-L399. https://doi.org/10.1152/ajplung.00010.2008
  21. Mehla, K., Balwani, S., Agrawal, A. and Ghosh, B. (2013) Ethyl gallate attenuates acute lung injury through Nrf2 signaling. Biochimie 95, 2404-2414. https://doi.org/10.1016/j.biochi.2013.08.030
  22. Meirinhos, J., Silva, B. M., Valentao, P., Seabra, R. M., Pereira, J. A., Dias, A., Andrade, P. B. and Ferreres, F. (2005) Analysis and quantification of flavonoidic compounds from Portuguese olive (Olea europaea L.) leaf cultivars. Nat. Prod. Res. 19, 189-195.
  23. Nguyen, T., Nioi, P. and Pickett, C. B. (2009) The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J. Biol. Chem. 284, 13291-13295. https://doi.org/10.1074/jbc.R900010200
  24. Quinlan, G. J., Lamb, N. J., Tilley, R., Evans, T. W. and Gutteridge, J. M. (1997) Plasma hypoxanthine levels in ARDS: implications for oxidative stress, morbidity, and mortality. Am. J. Respir. Crit. Care Med. 155, 479-484. https://doi.org/10.1164/ajrccm.155.2.9032182
  25. Ren, J. D., Wu, X. B., Jiang, R., Hao, D. P. and Liu, Y. (2016) Molecular hydrogen inhibits lipopolysaccharide-triggered NLRP3 inflammasome activation in macrophages by targeting the mitochondrial reactive oxygen species. Biochim. Biophys. Acta 1863, 50-55.
  26. Roowi, S. and Crozier, A. (2011) Flavonoids in tropical citrus species. J. Agric. Food Chem. 59, 12217-12225. https://doi.org/10.1021/jf203022f
  27. Ryter, S. W. and Tyrrell, R. M. (2000) The heme synthesis and degradation pathways: role in oxidant sensitivity. Heme oxygenase has both pro- and antioxidant properties. Free Radic. Biol. Med. 28, 289-309. https://doi.org/10.1016/S0891-5849(99)00223-3
  28. Strowig, T., Henao-Mejia, J., Elinav, E. and Flavell, R. (2012) Inflammasomes in health and disease. Nature 481, 278-286. https://doi.org/10.1038/nature10759
  29. Tianzhu, Z., Shihai, Y. and Juan, D. (2014) The effects of morin on lipopolysaccharide-induced acute lung injury by suppressing the lung NLRP3 inflammasome. Inflammation 37, 1976-1983. https://doi.org/10.1007/s10753-014-9930-1
  30. Wang, B., Zhu, X., Kim, Y., Li, J., Huang, S., Saleem, S., Li, R. C., Xu, Y., Dore, S. and Cao, W. (2012) Histone deacetylase inhibition activates transcription factor Nrf2 and protects against cerebral ischemic damage. Free Radic. Biol. Med. 52, 928-936. https://doi.org/10.1016/j.freeradbiomed.2011.12.006
  31. Ware, L. B. and Matthay, M. A. (2000) The acute respiratory distress syndrome. N. Engl. J. Med. 342, 1334-1349. https://doi.org/10.1056/NEJM200005043421806
  32. Yeh, C. H., Yang, J. J., Yang, M. L., Li, Y. C. and Kuan, Y. H. (2014) Rutin decreases lipopolysaccharide-induced acute lung injury via inhibition of oxidative stress and the MAPK-NF-${\kappa}B$ pathway. Free Radic. Biol. Med. 69, 249-257. https://doi.org/10.1016/j.freeradbiomed.2014.01.028
  33. Yu, G., Wan, R., Yin, G., Xiong, J., Hu, Y., Xing, M., Cang, X., Fan, Y., Xiao, W., Qiu, L., Wang, X. and Hu, G. (2014) Diosmetin ameliorates the severity of cerulein-induced acute pancreatitis in mice by inhibiting the activation of the nuclear factor-${\kappa}B$. Int. J. Clin. Exp. Pathol. 7, 2133-2142.
  34. Yunhe, F., Bo, L., Xiaosheng, F., Fengyang, L., Dejie, L., Zhicheng, L., Depeng, L., Yongguo, C., Xichen, Z., Naisheng, Z. and Zhengtao, Y. (2012) The effect of magnolol on the Toll-like receptor 4/nuclear factor ${\kappa}B$ signaling pathway in lipopolysaccharide-induced acute lung injury in mice. Eur. J. Pharmacol. 689, 255-261. https://doi.org/10.1016/j.ejphar.2012.05.038
  35. Zhang, Y., Li, X., Grailer, J. J., Wang, N., Wang, M., Yao, J., Zhong, R., Gao, G. F., Ward, P. A., Tan, D. X. and Li, X. (2016) Melatonin alleviates acute lung injury through inhibiting the NLRP3 inflammasome. J. Pineal Res. 60, 405-414. https://doi.org/10.1111/jpi.12322

Cited by

  1. Nrf2/HO-1 mediates the neuroprotective effect of mangiferin on early brain injury after subarachnoid hemorrhage by attenuating mitochondria-related apoptosis and neuroinflammation vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-12160-6
  2. The Crosstalk between Nrf2 and Inflammasomes vol.19, pp.2, 2018, https://doi.org/10.3390/ijms19020562
  3. Therapeutic Modulation of Virus-Induced Oxidative Stress via the Nrf2-Dependent Antioxidative Pathway vol.2018, pp.1942-0994, 2018, https://doi.org/10.1155/2018/6208067
  4. Ginsenoside Rg3 Attenuates Lipopolysaccharide-Induced Acute Lung Injury via MerTK-Dependent Activation of the PI3K/AKT/mTOR Pathway vol.9, pp.1663-9812, 2018, https://doi.org/10.3389/fphar.2018.00850
  5. Dysregulation of NRF2 in Cancer: from Molecular Mechanisms to Therapeutic Opportunities vol.26, pp.1, 2018, https://doi.org/10.4062/biomolther.2017.195
  6. Inhibition of PRMT5 Attenuates Oxidative Stress-Induced Pyroptosis via Activation of the Nrf2/HO-1 Signal Pathway in a Mouse Model of Renal Ischemia-Reperfusion Injury vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/2345658
  7. Potential Applications of NRF2 Inhibitors in Cancer Therapy vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/8592348
  8. Diosmetin induces apoptosis and enhances the chemotherapeutic efficacy of paclitaxel in non‐small cell lung cancer cells via Nrf2 inhibition vol.176, pp.12, 2018, https://doi.org/10.1111/bph.14652
  9. Diosmetin Induces Apoptosis by Downregulating AKT Phosphorylation via P53 Activation in Human Renal Carcinoma ACHN Cells vol.27, pp.None, 2018, https://doi.org/10.2174/0929866527666200330172646
  10. Inhibition and molecular mechanism of diosmetin against xanthine oxidase by multiple spectroscopies and molecular docking vol.44, pp.17, 2020, https://doi.org/10.1039/d0nj00679c
  11. Diosmetin alleviates hypoxia-induced myocardial apoptosis by inducing autophagy through AMPK activation vol.22, pp.2, 2018, https://doi.org/10.3892/mmr.2020.11241
  12. Diosmetin exhibits anti‐proliferative and anti‐inflammatory effects on TNF‐α‐stimulated human rheumatoid arthritis fibroblast‐like synoviocytes through regulating t vol.34, pp.6, 2020, https://doi.org/10.1002/ptr.6596
  13. Hydrogen attenuates sepsis-associated encephalopathy by NRF2 mediated NLRP3 pathway inactivation vol.69, pp.7, 2020, https://doi.org/10.1007/s00011-020-01347-9
  14. Aloin suppresses lipopolysaccharide-induced acute lung injury by inhibiting NLRP3/NF-κB via activation of SIRT1 in mice vol.42, pp.4, 2018, https://doi.org/10.1080/08923973.2020.1765373
  15. Euphorbia cuneata Represses LPS-Induced Acute Lung Injury in Mice via Its Antioxidative and Anti-Inflammatory Activities vol.9, pp.11, 2018, https://doi.org/10.3390/plants9111620
  16. Diosmetin attenuate experimental ulcerative colitis in rats via suppression of NF-κB, TNF-α and IL-6 signalling pathways correlated with down-regulation of apoptotic events vol.19, pp.None, 2021, https://doi.org/10.1177/20587392211067292
  17. Structure and Function of Mitochondria-Associated Endoplasmic Reticulum Membranes (MAMs) and Their Role in Cardiovascular Diseases vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/4578809
  18. Diosmetin Ameliorates Nonalcoholic Steatohepatitis through Modulating Lipogenesis and Inflammatory Response in a STAT1/CXCL10-Dependent Manner vol.69, pp.2, 2018, https://doi.org/10.1021/acs.jafc.0c06652
  19. Pathogen‐associated molecular patterns and extracellular Hsp70 interplay in NLRP3 inflammasome activation in monocytic and bronchial epithelial cellular models of COPD exacerbations vol.129, pp.2, 2021, https://doi.org/10.1111/apm.13089
  20. Flavonoids as potential phytotherapeutics to combat cytokine storm in SARS‐CoV‐2 vol.35, pp.8, 2021, https://doi.org/10.1002/ptr.7092
  21. Diosmetin Ameliorates Vascular Dysfunction and Remodeling by Modulation of Nrf2/HO-1 and p-JNK/p-NF-κB Expression in Hypertensive Rats vol.10, pp.9, 2018, https://doi.org/10.3390/antiox10091487
  22. Methyl p‑hydroxycinnamate exerts anti‑inflammatory effects in mouse models of lipopolysaccharide‑induced ARDS vol.25, pp.1, 2018, https://doi.org/10.3892/mmr.2021.12553
  23. Lagerstroemia ovalifolia Exerts Anti- Inflammatory Effects in Mice of LPSInduced ALI via Downregulating of MAPK and NF-κB Activation vol.31, pp.11, 2018, https://doi.org/10.4014/jmb.2107.07023
  24. Dasatinib protects against acute respiratory distress syndrome via Nrf2‐regulated M2 macrophages polarization vol.82, pp.8, 2021, https://doi.org/10.1002/ddr.21839
  25. Comprehensive review on therapeutic and phytochemical exploration of diosmetin: A promising moiety vol.2, pp.1, 2022, https://doi.org/10.1016/j.phyplu.2021.100179