• Title/Summary/Keyword: Nrf-2/HO-1 signaling

Search Result 72, Processing Time 0.025 seconds

Suppression of Lipopolysaccharide-Induced Inflammatory and Oxidative Response by 5-Aminolevulinic Acid in RAW 264.7 Macrophages and Zebrafish Larvae

  • Ji, Seon Yeong;Cha, Hee-Jae;Molagoda, Ilandarage Menu Neelaka;Kim, Min Yeong;Kim, So Young;Hwangbo, Hyun;Lee, Hyesook;Kim, Gi-Young;Kim, Do-Hyung;Hyun, Jin Won;Kim, Heui-Soo;Kim, Suhkmann;Jin, Cheng-Yun;Choi, Yung Hyun
    • Biomolecules & Therapeutics
    • /
    • v.29 no.6
    • /
    • pp.685-696
    • /
    • 2021
  • In this study, we investigated the inhibitory effect of 5-aminolevulinic acid (ALA), a heme precursor, on inflammatory and oxidative stress activated by lipopolysaccharide (LPS) in RAW 264.7 macrophages by estimating nitric oxide (NO), prostaglandin E2 (PGE2), cytokines, and reactive oxygen species (ROS). We also evaluated the molecular mechanisms through analysis of the expression of their regulatory genes, and further evaluated the anti-inflammatory and antioxidant efficacy of ALA against LPS in the zebrafish model. Our results indicated that ALA treatment significantly attenuated the LPS-induced release of pro-inflammatory mediators including NO and PGE2, which was associated with decreased inducible NO synthase and cyclooxygenase-2 expression. ALA also inhibited the LPS-induced expression of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6, reducing their extracellular secretion. Additionally, ALA abolished ROS generation, improved the mitochondrial mass, and enhanced the expression of heme oxygenase-1 (HO-1) and the activation of nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2) in LPS-stimulated RAW 264.7 macrophages. However, zinc protoporphyrin, a specific inhibitor of HO-1, reversed the ALA-mediated inhibition of pro-inflammatory cytokines production and activation of mitochondrial function in LPS-treated RAW 264.7 macrophages. Furthermore, ALA significantly abolished the expression of LPS-induced pro-inflammatory mediators and cytokines, and showed strong protective effects against NO and ROS production in zebrafish larvae. In conclusion, our findings suggest that ALA exerts LPS-induced anti-inflammatory and antioxidant effects by upregulating the Nrf2/HO-1 signaling pathway, and that ALA can be a potential functional agent to prevent inflammatory and oxidative damage.

Anti-inflammatory and Antioxidant Effects of Cheongnoimyungshin-hwan in RAW 264.7 Macrophages (RAW 264.7 대식세포에서 청뇌명신환(淸腦明神丸)에 의한 염증성 및 산화적 스트레스 반응 억제 효능)

  • Son, Byun Woo;Lee, Myeong Hwa;Hwang, Won Deok
    • Herbal Formula Science
    • /
    • v.26 no.1
    • /
    • pp.1-12
    • /
    • 2018
  • Objectives : Cheongnoimyungshin-hwan (CNMSH) is a Herbal compound prescription that is composed mainly of herbal medicines such as Ginseng Radix Alba, Angelicae Gigantis Radix, Dioscoreae Rhizoma, Longan Arillus and cornus cervi parvum, and for the purpose of improving memory and preventing dementia. Methods : In this study, it was investigated whether CNMSH could suppress inflammatory response and oxidative stress in the lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. As a result, CNMSH decreased expression of inducible nitric oxide (NO) synthase and cyclooxygenase-2, and also inhibited production of NO, prostaglandin E2. Results : This effect was associated with the suppression of the expression of p65, one of the nuclear factor-kappaB ($NF-{\kappa}B$) subunits, and increased expression of $I{\kappa}B-{\alpha}$, inhibit the $NF-{\kappa}B$ transcription factor. In addition, CNMSH significantly blocked intracellular reactive oxygen species accumulation in response to LPS stimulation. Furthermore, CNMSH increased expression of nuclear factor erythroid 2-related factor (Nrf)-2 activation and heme oxygenase (HO)-1. Conclusions : Therefore, it has been shown anti-inflammatory and antioxidant effects by inhibiting the expression and production of inflammatory mediators in LPS-stimulated macrophages, and is associated with ROS generation and is activated by Nrf2/HO-1 signaling pathway.

Fisetin Protects C2C12 Mouse Myoblasts from Oxidative Stress-Induced Cytotoxicity through Regulation of the Nrf2/HO-1 Signaling

  • Cheol Park;Hee-Jae Cha;Da Hye Kim;Chan-Young Kwon;Shin-Hyung Park;Su Hyun Hong;EunJin Bang;Jaehun Cheong;Gi-Young Kim;Yung Hyun Choi
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.5
    • /
    • pp.591-599
    • /
    • 2023
  • Fisetin is a bioactive flavonol molecule and has been shown to have antioxidant potential, but its efficacy has not been fully validated. The aim of the present study was to investigate the protective efficacy of fisetin on C2C12 murine myoblastjdusts under hydrogen peroxide (H2O2)-induced oxidative damage. The results revealed that fisetin significantly weakened H2O2-induced cell viability inhibition and DNA damage while blocking reactive oxygen species (ROS) generation. Fisetin also significantly alleviated cell cycle arrest by H2O2 treatment through by reversing the upregulation of p21WAF1/CIP1 expression and the downregulation of cyclin A and B levels. In addition, fisetin significantly blocked apoptosis induced by H2O2 through increasing the Bcl-2/Bax ratio and attenuating mitochondrial damage, which was accompanied by inactivation of caspase-3 and suppression of poly(ADP-ribose) polymerase cleavage. Furthermore, fisetin-induced nuclear translocation and phosphorylation of Nrf2 were related to the increased expression and activation of heme oxygenase-1 (HO-1) in H2O2-stimulated C2C12 myoblasts. However, the protective efficacy of fisetin on H2O2-mediated cytotoxicity, including cell cycle arrest, apoptosis and mitochondrial dysfunction, were greatly offset when HO-1 activity was artificially inhibited. Therefore, our results indicate that fisetin as an Nrf2 activator effectively abrogated oxidative stress-mediated damage in C2C12 myoblasts.

Antioxidant Effect of Viola mandshurica W. Becker on the High Fat Diet-Induced Renal Oxidative Stress (고지방식이로 유도한 신장의 산화적 스트레스에 대한 자화지정(紫花地丁)의 항산화 효과)

  • Choi, Mi Hye;Park, In Sik
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.30 no.4
    • /
    • pp.250-256
    • /
    • 2016
  • The prevalence of renal disease is increased with the overweight and obesity. High fat diet-associated oxidative stress increases production of reactive oxygen species (ROS) and induces apoptosis. There are two types of antioxidant defense mechanisms for oxidative stress. One is the enzyme defense mechanism by antioxidant enzymes such as superoxide dismutase (SOD), and catalase (CAT). The other is non-enzyme defense mechanism by signaling molecules such as nuclear factor-like 2 (Nrf-2), HO-1. In this study, we induced obesity in mice with high fat diet for six weeks and thereafter administered orally Viola mandshurica for 4 weeks. V. mandshurica is known to clear heat, detoxify and cool blood, and subside a swelling effect. In the V. mandshurica administered group, the immunoreactive signal of the Tunel staining was weaker than that of obesity group. Proapoptotic Bax, caspase 3 immunoreactives of the V. mandshurica administered group was lower than those of obesity group, whereas anti-apoptotic Bcl-2 immunoreactity was higher in the V. mandshurica administered group. Antioxidant enzyme mechanism such as superoxide dismutase 2 (SOD2), catalase (CAT) immunoreactives of the V. mandshurica administered group and Antioxidant non-enzyme mechanism such as Nuclear factor-like 2 (Nrf2), Heme Oxygenase 1 (HO-1) immunoreactives of the V. mandshurica administered group was higher than those of obesity group. These results demonstrate that V. mandshurica had the antioxidant and anti-apoptosis effects on obese mice.

Synergistic Renoprotective Effect of Melatonin and Zileuton by Inhibition of Ferroptosis via the AKT/mTOR/NRF2 Signaling in Kidney Injury and Fibrosis

  • Kyung Hee Jung;Sang Eun Kim;Han Gyeol Go;Yun Ji Lee;Min Seok Park;Soyeon Ko;Beom Seok Han;Young-Chan Yoon;Ye Jin Cho;Pureunchowon Lee;Sang-Ho Lee;Kipyo Kim;Soon-Sun Hong
    • Biomolecules & Therapeutics
    • /
    • v.31 no.6
    • /
    • pp.599-610
    • /
    • 2023
  • According to recent evidence, ferroptosis is a major cell death mechanism in the pathogenesis of kidney injury and fibrosis. Despite the renoprotective effects of classical ferroptosis inhibitors, therapeutic approaches targeting kidney ferroptosis remain limited. In this study, we assessed the renoprotective effects of melatonin and zileuton as a novel therapeutic strategy against ferroptosis-mediated kidney injury and fibrosis. First, we identified RSL3-induced ferroptosis in renal tubular epithelial HK-2 and HKC-8 cells. Lipid peroxidation and cell death induced by RSL3 were synergistically mitigated by the combination of melatonin and zileuton. Combination treatment significantly downregulated the expression of ferroptosis-associated proteins, 4-HNE and HO-1, and upregulated the expression of GPX4. The expression levels of p-AKT and p-mTOR also increased, in addition to that of NRF2 in renal tubular epithelial cells. When melatonin (20 mg/kg) and zileuton (20 mg/kg) were administered to a unilateral ureteral obstruction (UUO) mouse model, the combination significantly reduced tubular injury and fibrosis by decreasing the expression of profibrotic markers, such as α-SMA and fibronectin. More importantly, the combination ameliorated the increase in 4-HNE levels and decreased GPX4 expression in UUO mice. Overall, the combination of melatonin and zileuton was found to effectively ameliorate ferroptosis-related kidney injury by upregulating the AKT/mTOR/ NRF2 signaling pathway, suggesting a promising therapeutic strategy for protection against ferroptosis-mediated kidney injury and fibrosis.

Sipyukmiryuki-eum Exhibits Anti-inflammatory and Anti-oxidative Effect viaActivation of Nrf2/HO-1 Signaling in Lipopolysaccharide-stimulated RAW264.7 Macrophages (Lipopolysaccharide로 자극된 RAW 264.7 대식세포에서 Nrf2/HO-1 경로 활성화를 통한 십육미류기음(十六味流氣飮) 추출물의 항염증 및 항산화 효과)

  • Kwon, Da Hye;Hwang-Bo, Hyun;Kim, Min Young;Ji, Seon Yeong;Hong, Su Hyun;Park, Cheol;Hwang, Hye-Jin;Choi, Yung Hyun
    • Herbal Formula Science
    • /
    • v.27 no.1
    • /
    • pp.17-29
    • /
    • 2019
  • Inflammatory and oxidative stimuli play a critical role not only in the process of transforming normal cells into cancer cells, but also in the proliferation process of cancer cells. Sipyukmiryukieum (SYMRKU), a traditional Korean herb-combined remedy, is composed of 16 kinds of herbal medicines, which were recorded for "Ongjeo" treatment in "Dongeuibogam". In this study, we investigated the inhibitory effect of SYMRKU against inflammatory and oxidative responses in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Our results showed that SYMRKU significantly inhibited LPS-induced secretion of pro-inflammatory mediators including nitric oxide (NO) and prostaglandin $E_2$ without showing any significant cytotoxicity. Consistent with these results, SYMRKU down-regulated LPS-induced expression of their regulatory enzymes such as inducible NO synthase and cyclooxygenase-2. SYMRKU also inhibited LPS-induced production and expression of pro-inflammatory cytokines such as tumor necrosis factor-${\alpha}$, interleukin (IL)-$1{\beta}$ and IL-6. In addition, SYMRKU significantly reduced the production of reactive oxygen species by LPS and showed a strong, which was associated with induction of nuclear factor erythroid 2-related factor 2 and heme oxygenase-1 expression. Although further studies are needed to fully understand the anti-inflammatory effects associated with the antioxidant capacity of SYMRKU, the findings of the current study suggest that SYMRKU may have potential benefits by inhibiting the onset and/or treatment of inflammatory and/or oxidative diseases.

In vitro Anti-oxidative and Anti-inflammatory Activities of Horse-bone Extract via Up-regulation of Heme-oxygenase 1 (말뼈추출물의 Hemeoxygenase-1의 발현 조절을 통한 시험관내 항염증 효과)

  • Im, Eun Ju;Lee, Ki-Ja;Cho, Gil-Jae;Kim, Hyun-Kyoung;Kim, Suk;Rhee, Man Hee
    • Journal of agriculture & life science
    • /
    • v.50 no.2
    • /
    • pp.139-150
    • /
    • 2016
  • Few studies have been reported that horse-bone extract(HBE) can prevent and treatment of bone diseases. However, HBE' therapeutic activities are still not fully understood. This study determined whether HBE up-regulates hemeoxygenase 1(HO-1) and this mediates its anti-inflammatory effect in murine macrophages.Nitric oxide(NO) assay, MTT assay and DPPH assay were performed. In addition, Western blotting and real time PCR were used to determine protein expression, and gene expression, respectively. HBE significantly inhibited NO production without observable cytotoxicity. In addition, HBE attenuated inducible nitric oxide synthase (iNOS), cyclooxygenase-2(COX-2) and phospho (p)-ERK protein expressions in LPS(0.1㎍/ml) stimulated RAW264.7 cells. On the other hand, HBE alone up-regulated HO-1 and Nrf-2 expressions, which mediated HBE's anti-inflammatory effect in RAW264.7 cells. Finally, HBE up-regulated HO-1 and impaired ERK1/2 signaling pathways, and thus it may provide protection against cellular oxidation and inflammation.

Protective effect of Artemisiae Capillaris Herba water extract on liver injury induced by thioacetamide (인진호 열수 추출물이 thioacetamide에 의해 유발된 간손상에 미치는 간보호 효과)

  • Kim, Min Ju;Lee, Jin A;Shin, Mi-Rae;Park, Hae-Jin;Roh, Seong-Soo
    • Journal of Nutrition and Health
    • /
    • v.54 no.4
    • /
    • pp.412-421
    • /
    • 2021
  • Purpose: Thioacetamide (TAA) produces reactive oxygen species (ROS) in the liver, and the generated ROS induces liver injury through inflammatory reactions. The current study was undertaken to investigate the hepatoprotective effect of Artemisiae Capillaris Herba water extract (AC), imparted via its antioxidant activity, in an animal model of TAA-induced liver injury. Methods: Animal experiments were conducted in 5 groups: normal, control (TAA 200 mg/kg), SM (TAA 200 mg/kg + silymarin 100 mg/kg), ACL (TAA 200 mg/kg + AC 100 mg/kg), ACH (TAA 200 mg/kg + AC 200mg/kg). TAA (intraperitoneal) and treatment compounds (per oral) were administered for 3 days. Serum levels of ammonia concentration and myeloperoxidase (MPO) activity were subsequently measured. Liver tissues were subjected to western blot analysis for measuring the oxidative stress (NADPH oxidase), anti-oxidative activity (Nrf2, heme oxygenase-1 [HO-1], superoxide dismutase [SOD], catalase, and GPx-1/2), tissue inhibitors of metalloproteinase (TIMP)-1, and matrix metalloproteinases (MMPs) protein expressions. Results: Serum ammonia levels and MPO activity were significantly increased in the TAA-induced control group, whereas groups administered AC treatment showed markedly reduced levels. Western blot analysis revealed significantly increased NOX2 and p22phox expressions, (oxidative stress-related factors) in the TAA-induced control group. These levels were determined to be significantly decreased after AC exposure. Moreover, antioxidant-related factors including Nrf2, HO-1, SOD, catalase, and GPx-1/2 were significantly decreased in the control group and increased in the AC treated groups. In addition, MMP expressions were significantly suppressed in the AC treatment group due to increased levels of TIMP-1. Conclusion: Taken together, these data indicate that exposure to AC reduces the oxidative stress by inhibiting the expression of NADPH oxidase (NOX2 and p22phox) through the Nrf2 signaling pathway. We therefore propose the potential of AC for the prevention and treatment of TAA-induced liver injury.

2,3-Dimethoxy-2′-hydroxychalcone ameliorates TNF-α-induced ICAM-1 expression and subsequent monocyte adhesiveness via NF-kappaB inhibition and HO-1 induction in HaCaT cells

  • Kim, Hyejin;Youn, Gi Soo;An, Soo Yeon;Kwon, Hyeok Yil;Choi, Soo Young;Park, Jinseu
    • BMB Reports
    • /
    • v.49 no.1
    • /
    • pp.57-62
    • /
    • 2016
  • Up-regulation of adhesion molecules plays an important role in the infiltration of leukocytes into the skin during the development of various inflammatory skin diseases, such as atopic dermatitis. In this study, we investigated the modulatory effects of 2,3-dimethoxy-2′-hydroxychalcone (DMHC) on tumor necrosis factor (TNF)-α-induced intercellular adhesion molecule-1 (ICAM-1) expression and monocyte adhesiveness, as well as the molecular mechanisms underlying its action in the HaCaT human keratinocyte cell line. Pre-treating HaCaT cells with DMHC significantly suppressed TNF-α-induced ICAM-1 expression and subsequent monocyte adhesiveness. DMHC inhibited TNF-α-induced activation of NF-ᴋB. In addition, DMHC induced HO-1 expression as well as NRF2 activation. Furthermore, HO-1 knockdown using siRNA reversed the inhibitory effect of DMHC on TNF-α-induced ICAM-1 expression and adhesion of monocytes to keratinocytes. These results suggest that DMHC may inhibit TNF-α-induced ICAM-1 expression and adhesion of monocytes to keratinocytes by suppressing the signaling cascades leading to NF-ᴋB activation and inducing HO-1 expression in keratinocytes. [BMB Reports 2016; 49(1): 57-62]

Cytoprotective Effect of a Neutrase Enzymatic Hydrolysate Derived from Korea Pen Shell Atrina pectinata Against Hydrogen Peroxide -Induced Oxidative Damages in Hepatocytes (산화적 손상에 대한 키조개(Atrina pectinata) 효소 가수분해물의 간세포 보호 효과)

  • Han, Eui Jeong;Shin, Eun-Ji;Kim, Kee-Woong;Ahn, Ginnae;Bae, Tae Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.53 no.1
    • /
    • pp.123-131
    • /
    • 2020
  • In this study, we investigated the protective effects of a Neutrase enzymatic hydrolysate derived from Korea pen shell Atrina pectinata (APN) against hydrogen peroxide (H2O2)-induced oxidative damage in hepatocytes. First, we confirmed that APN has antioxidant activities by scavenging 2,2-azino-bis (3-ethylbenzthiazoline)-6-sulfonic acid radical (ABTS+) and H2O2 and increasing oxygen radical absorbance capacity (ORAC) value. Also, the treatment of APN increased the cell viability by reducing the intracellular reactive oxygen species (ROS) production in H2O2-stimulated hepatocytes. In addition, APN decreased the sub-G1 DNA contents and the apoptotic body formation increased by H2O2 stimulation. Moreover, APN modulated the protein expression of apoptosis related molecules (Bcl-2, Bax and p53) by suppressing the activation of nuclear factor NFkB and ERK/p38 signaling in H2O2-stimulated hepatocytes. Furthermore, APN led to the activation of Nrf2/HO-1signaling known as antioxidant systems. These results suggest APN protects hepatocytes against oxidative damages caused by H2O2 stimulation.