• 제목/요약/키워드: Nozzle penetration

검색결과 131건 처리시간 0.022초

DISTRIBUTION OF FUEL MASS AFTER WALL IMPINGEMENT OF DIESEL SPRAY

  • Ko, K.N.;Huh, J.C.;Arai, M.
    • International Journal of Automotive Technology
    • /
    • 제7권4호
    • /
    • pp.493-500
    • /
    • 2006
  • Investigation on the fuel adhering on a wall was carried out experimentally to clarify the characteristics of impinging diesel sprays. Diesel sprays were injected into a high-pressure chamber of cold state and impinged to a wall having various impingement distances and ambient pressures. Photographs of both the fuel film and the post-impingement spray were taken through a transparent wall. Adhered fuel mass on a wall was measured by means of dividing into two types of fuel state: the fuel film itself; and sparsely adhered fuel droplets. Adhering fuel ratio was predicted and further the distribution of fuel mass for impinging diesel spray was analyzed as a function of time. As result, with an increase of the ambient pressure, both the maximum fuel film diameter and the adhered fuel ratio decreased. Based on some assumptions, the adhering fuel mass increased rapidly until the fuel film diameter approached the maximum value, and then increased comparatively gradually.

분무간 충돌시스템에 대한 수치해석적 연구 (A Numerical Study on the Spray-to-Spray Impingement System)

  • 고권현;유홍선;이성혁
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.75-80
    • /
    • 2001
  • The present article deals with the numerical calculations for the inter-spray impingement of two diesel sprays under the conditions of high injection pressure. The Wave model involving the cavitation effect inside the nozzle was used for describing the atomization process. In particular, a hybrid model for drop collision was newly suggested in this study and compared with the O'Rourk's model, which has been widely used for diesel sprays. The impingement angles of 60 and 90 degrees were considered for simulation of non-evaporative diesel sprays. The calculated results for tip penetration were compared with experimental data and the Sauter Mean Diameter(SMD) characteristic was analyzed. It was concluded that the hybrid model slightly shows better agreement with experimental data than the O'Rourke's model. However, the more elaborate study should be needed for better understanding of spray-to-spray impingement phenomena.

  • PDF

분류에 의한 SLURRY 마멸 (Slurry Wear Test on the Liquid Jet)

  • 우창기;조견식
    • 한국공작기계학회논문집
    • /
    • 제11권5호
    • /
    • pp.88-92
    • /
    • 2002
  • This research is about slurry wear of SM45C and SUS304, which using standard sand and KUM river sand. The results are as follows ; 1. Mass loss rates of both standard sand and KUM river sand were linearly increased as increasement of time and velocity. 2. The average diameter of sand from relatively, less wear rate and portion of larger particles. 3. Wear resistance was linear with time and velocity of liquid jet regardless of type of sand. Also, it was able to evaluate with the formula, $HV^2$/E calibrated with n, the velocity index. 4. The wear surface in liquid jet experiment was smooth. The maximum wear depth was observed at the location 2~4mm apart from the center in the condition of $90^{\circ}$ of collision angle 6mm of nozzle diameter, and 20mm of collision distance. The sectional shape in radial appeared as 'W'shape.

금강 토사에 의한 SLURRY 마멸 (Slurry Wear of Sand from the Kum River)

  • 우창기;조견식;김대업;강동명;이하성
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.798-801
    • /
    • 2001
  • This research is about slurry wear of SM45C and SUS304, which using standard sand and KUM river sand. The results are as follows ; 1. Mass loss rates of both standard sand and KUM river sand were linearly increased as increasement of time and velocity. 2. The average diameter of sand from relatively, less wear rate and portion of larger particles. 3. Wear resistance was linear with time and velocity of liquid jet regardless of type of sand. Also it was able to evaluate with the formula, HV2/E calibrated with n, the velocity index. 4. The wear surface in liquid jet experiment was smooth. The maximum wear depth was observed at the location, 2~4mm apart from the center in the condition of 90$^{\circ}$of collision angle 6mm of nozzle diameter, and 20mm of collision distance. The sectional shape in radial appeared as 'W' shape.

  • PDF

Reduced Quasi-Dimensional Combustion Model of the Direct Injection Diesel Engine for Performance and Emissions Predictions

  • Jung, Dohoy;Assanis, Dennis N.
    • Journal of Mechanical Science and Technology
    • /
    • 제18권5호
    • /
    • pp.865-876
    • /
    • 2004
  • A new concept of reduced quasi-dimensional combustion model for a direct injection diesel engine is developed based on the previously developed quasi-dimensional multi-zone model to improve the computational efficiency. In the reduced model, spray penetration and air entrainment are calculated for a number of zones within the spray while three zones with aggregated spray zone concept are used for the calculation of spray combustion and emission formation processes. It is also assumed that liquid phase fuel appears only near the nozzle exit during the breakup period and that spray vaporization is immediate in order to reduce the computational time. Validation of the reduced model with experimental data demonstrated that the new model can predict engine performance and NO and soot emissions reasonably well compared to the original model. With the new concept of reduced model, computational efficiency is significantly improved as much as 200 times compared to the original model.

고온 분위기에서 디젤 분무의 거동에 관한 연구 (A Behavior Study of Diesel Spray on High Temperature)

  • 류호성;정임권;송규근
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.410-415
    • /
    • 2000
  • A diesel engine is one of the major prime movers to its high thermal efficiency. But due to the recent attention far the environmental pollution, the emissions of diesel engine became to a important problem. So it is needed to understand the characteristics of diesel spray injected into a combustion chamber. The factor which controls the diesel spray are the injection pressure, the nozzle diameter, the impinging angle and the variation of pressure and temperature. In this paper, experiments were conducted far the variation of the environmental temperature(273k, 373k, 573k), free spray and impinging spray. And the notions of penetration, spray angle, axial distance for free spray, and axial distance, spray thickness from impinging wall fur impinging spray.

  • PDF

저탄소 박판 강재의 Nd:YAG 레이저 용접부 형성에 미치는 공정변수의 영향 (Effect of Process Parameters on Bead Formation in Nd:YAG Laser Welding of Thin Steels)

  • 김기철;허재협
    • Journal of Welding and Joining
    • /
    • 제19권3호
    • /
    • pp.317-324
    • /
    • 2001
  • This study deals with high power Nd:YAG laser welding of thin steels for small pressure vessels. Full penetration welding at the overlap joint was performed so as to assure sufficient weld strength. Results showed that mid-depth weld size reduced drastically with increasing the travel speed. Position of focus had little effect on the bead formation even though short focal system was used. However, the shape factor and the bead width had closely related with the position of focus. Based on the microstructural inspection, acceptable weld was obtained when the overlap clearance was controlled up to 20% of the base metal thickness. In the case that the joint contained more clearance than the critical value, both the tensile shear strength and the tear strength were reduced. Results also demonstrated that shielding gases were proved to play a key role as far as the bead formation characteristics was taken into consideration. Blowing dry air through 5mm in diameter nozzle produced narrower bead cross-section than that of argon or nitrogen shielding.

  • PDF

A review of fatigue failures in LWR plants in Japan

  • Kunihiro, Iida
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 1996년도 특별강연 및 추계학술발표 개요집
    • /
    • pp.19-34
    • /
    • 1996
  • A review was made of fatigue failures of nuclear power plant components in Japan, which were experienced in service and during periodical inspection. No case has been recently reported of a service fatigue failure of a reactor pressure vessel itself, excluding nozzle corner cracks, that occurred many years ago. But, service fatigue failures have been occasionally experienced in piping systems, pumps, and valves, on which fatigue design seems to have been inadequately applied. The causes of fatigue failures can be divided into two categories: mechanical-vibration-induced fatigue and thermal-fluctuation-induced fatigue. Vibration-induced fatigue failure occurs more frequently than is generally thought. The lesson gleaned from the present survey is a recognition that a service fatigue failure may occur due to any one or a combination of the following factors: (1) lack of communication between designers and fabrication engineers, (2) lack of knowledge about a possibility of fatigue failure and poor consideration about the effects of residual stresses, (3) lack of consideration on possible vibration in the design and fabrication stages, and (4) lack of fusion or poor penetration in a welded joint.

  • PDF

고온 분위기에서 디젤 분무의 거동에 관한 연구 (A Behavior Study of Diesel Spray on High Temperature)

  • 류호성;송규근;안진근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권4호
    • /
    • pp.454-459
    • /
    • 2000
  • Diesel engine which has high thermal efficiency is one of the major movers. Recently, as people pay attention to the environmental pollution, the emission of Diesel engine becomes an important problem. So it is needed to understand the characteristics of diesel fuel spray injected into a combustion chamber to reduce the emission. The factors which control the diesel fuel spray are the injection pressure, the nozzle diameter, the impinging angle and the variation of an ambient pressure and temperature. In this paper, the experiments were conducted in the free spray and the impinging spray with various ambient temperatures(273K, 373K, 573K). And the behaviors of the diesel fuel spray, such as penetration, spray angle and axial distance in the free spray and axial distance and spray thickness in the impinging spray were studied.

  • PDF

가스터어빈형 연속류연소기의 유동에 관한 연구(II) -연소기내의 유동특성- (A Study on Flow Characterstics of Gas Turbine rvpe Combustor (II) - Flow Characteristics in Combustor -)

  • 이근오;지용욱;김형섭
    • 한국안전학회지
    • /
    • 제4권1호
    • /
    • pp.59-70
    • /
    • 1989
  • This paper deals with the experimental study on the flow characteristics in straight flow can type combustor which has been used for high pressure ratio gas turbine combustor. The author has investigated the effects of swirl number and secondary air hole arrays in axial position on the flow characteristics by adopting the tuft method and 5-Hole Pilot Tube. From these experiments, as the swirl number increases, the results obtained is that the area of recirculation zone becomes wide and the position of vortex-core region approaches to the near of fuel nozzle in the model combustor. The most favourable penetration is obtained when secondary air jet is introduced through the air holes distributed in the form of paralled two rows in axial position of model combustor.

  • PDF