• 제목/요약/키워드: Nozzle Transfer

검색결과 331건 처리시간 0.024초

3구 노즐을 이용한 산소의 용존율 향상 (Enhance of Dissolved Oxygen Rate using a 3-prong Nozzle)

  • 박영식
    • 한국환경과학회지
    • /
    • 제24권7호
    • /
    • pp.947-954
    • /
    • 2015
  • Dielectric barrier discharge plasma is a new technique in water pollutant degradation, which that is characterized by the production of chemically active species such as hydroxyl radicals, ozone, hydrogen peroxide, etc. If dissolving of plasma gas generated in the plasma reaction has increased, it is possible to increase the contaminant removal capacity. In this study, the improvement on the dissolving performance of plasma gas was evaluated by the indirect method measuring the overall oxygen transfer coefficient. Experiments were conducted to examine the effects of nozzle type, distance from water surface, air supply rate and liquid circulation rate. The experimental results showed that the $K_{La}$ value of the 3-prong nozzle is 2.67 times higher than the diffuser. The order of $K_{La}$ value with nozzle type ranked in the following order: 3-prong nozzle (inner diameter, less 1 mm) > circular nozzle (inner diameter, 1.5 mm) > ellipse nozzle (short diameter 1 mm, long diameter 2.5 mm) > circular nozzle (inner diameter, 3 mm). Optimal liquid circulation rate was appeared to be 1.7 L/min, the value of $K_{La}$ was 0.510 1/min. The value of $K_{La}$ with increasing air supply rate was revealed in the form of an exponential such as $K_{La}=0.3581e^{0.2919^*air\;flow\;rate}$.

오리피스 노즐 수직 2 상 유동의 물질전달 특성 (Mass Transfer Characteristics of Vertical Two-Phase Flows with Orifice Nozzle)

  • 김동준;양희천
    • 대한기계학회논문집B
    • /
    • 제39권10호
    • /
    • pp.817-824
    • /
    • 2015
  • 본 논문은 수직 오리피스 노즐의 유동 및 물질전달 특성에 대한 실험적 연구를 목적으로 한다. 구동유체 및 부유체의 유량, 용존산소 농도 그리고 소비 전력을 측정하였으며, 고속 카메라를 이용한 직접 촬영 기법으로 수직 혼합유동의 가시화 이미지를 획득하였다. 측정자료를 이용하여 질량비, 총괄 산소전달 계수 그리고 물질전달 성능계수를 도출하였다. 구동압력이 증가하면 질량비는 약간 감소하는 반면에, 산소전달 계수와 소비전력은 증가하였다. 구동압력이 증가하고 질량비가 작아지면, 기포의 미세화가 촉진되고 확산도가 증대되기 때문에 산소 전달율이 증가하였다.

충돌판(衝突板) 근방(近傍)에 배열(配列)된 2차원(次元) rod가 충돌분류(衝突噴流) 열전달(熱傳達)에 미치는 영향(影響)[3] : rod직경변화(直徑燮化)에 대한효과(效果) (Heat Transfer Augmentation on Flat Plate with Two-Dimensional Rods in Impinging Air Jet System [3] : Effect of Rod Diameter)

  • 김동춘;이용화;서정윤
    • 설비공학논문집
    • /
    • 제2권4호
    • /
    • pp.295-302
    • /
    • 1990
  • The purpose of this study is augmentation of heat transfer without additional power in two-dimensional impinging air jet. The technique of heat transfer augmentation used in this experiment is to place rod bundles in front of the flat heated surface. The effects of rod diameter, nozzle-to-target plate distance and the nozzle exit velocity on heat transfer have been investigated. The main conclusions obtained from this experiment are as follows. High heat transfer augmentation is achieved by means of flow acceleration and thinning of boundary layer by placing rod bundles in front of the flat plate. Average heat transfer coefficient becomes maximum in the case of H/B=10,D=4mm. For H/B=2,D=4mm, maximum heat transfer augmentation has been determined to be about 1.5 times larger than that of the flat plate. Heat transfer augmentation by placing the rod bundles at 12m/s is to be about 2 times more than increasing nozzle exit velocity from 12m/s to 18m/s.

  • PDF

고온 챔버의 노즐형상에 따른 섬유가공기 유동 및 열전달 해석 (FLOW AND HEAT TRANSFER CHARACTERISTICS OF TEXTILE MACHINE ACCORDING TO NOZZLE SHAPES OF HIGH TEMPERATURE CHAMBER)

  • 박선명;박태선
    • 한국전산유체공학회지
    • /
    • 제20권3호
    • /
    • pp.70-78
    • /
    • 2015
  • Turbulent flow and heat transfer characteristics of textile machine are numerically investigated. To examine the influence of flow structures on the drying performance of fabrics, the nozzle shape of high temperature chamber is changed. For several nozzles, flow and heat transfer characteristics are discussed. The results show that the drying performance is improved by controlling the angle and arrangement of nozzles corresponding to different drying conditions. This feature is strongly related to the enhancement of turbulent fluctuations and secondary flows.

MESH에 의한 열전달증진에 관한 연구 (A Study on the Heat Transfer Enhancement by Mesh)

  • 금성민;정동수;김종보
    • 대한기계학회논문집B
    • /
    • 제22권5호
    • /
    • pp.716-724
    • /
    • 1998
  • The objective of this research was to investigate the enhancement of heat transfer by mesh in impinging air jet system. The technique used in this research is to place mesh as a turbulence promoter in front of the impinging plate. The heat transfer characteristics with and without mesh, the effect of clearances between impinging plate and mesh, the effect of distance between nozzle exit and impinging plate, and the effect of nozzle exit velocity have been studied experimentally. When mesh was installed in front of the impinging plate, heat transer has been increased due to the acceleration between rectangular holes and divided small jets. When clearances are changed, heat transfer comes to a maximum under the condition of C = 1 mm, irrespective of nozzle exit velocity or H/B. Also the average heat transfer enhancement with mesh has been increased about 44% under the condition of U = 18 m/s, H/B = 2 and C = 1 mm, compared to the result of a flat plate without mesh. And the results of this research are compared with existing heat transfer augmentation method by rectangular or circular rod.

브라운관용 플런저 냉각표면의 온도분포 개선을 위한 연구 (A Study for Improvement of Temperature Distribution in Plunger Surface Cooling)

  • 곽경민;박지열;배철호
    • 한국정밀공학회지
    • /
    • 제25권3호
    • /
    • pp.126-133
    • /
    • 2008
  • The main objective of the present study is to achieve linear temperature distribution of cooling surface of plunger. K type thermocouples are attached at the surface of plunger to measure temperature. Nozzle and insulating material are inserted in the pin hole of the plunger for this study. Cooling water flow enters at one nozzle and leaves at three nozzles. Flow through nozzle can be activated in the pin hole, temperature of hot point around hole is decreased. Meanwhile, insulating material blocks off heat transfer, temperature of cold point around hole is increased. By combination of nozzle and insulation, heat transfer of hole is controlled effectively, as result its, temperature of plunger surface shows linear temperature distribution.

스월 충돌제트의 열전달 특성에 관한 실험적 연굴 (Experimental Study on Heat Transfer Characteristics of Swirling Impinging Jet)

  • 조정원;이상준
    • 대한기계학회논문집B
    • /
    • 제25권10호
    • /
    • pp.1346-1354
    • /
    • 2001
  • The heat transfer characteristics off swirling air jet impinging on a heated flat plate have been investigated experimentally. The main object is to enhance the heat transfer rate by increasing turbulence intensity of impinging jet with a specially designed swirl generator. The mean velocity and turbulent intensity profiles of swirling jet were measured using a hot-wire anemomety. The temperature distribution on the heated flat surface was measured with thermocouples. As a result the swirl effect on the local heat transfer rate on the impinging plate is confined mainly in the small nozzle-to-plate spacings such as L/D<3 at the stagnation region. For small nozzle-to-plate spacings, the local heat transfer in the stagnation region is enhanced from the increased turbulence intensity due to swirl motion, compared with the conventional axisymmetric impinging jet without swirl. For example, the local Nusselt number of swirling jet with swirl number Sw=0.75 and Sw=1 is about 9.7-76% higher than that of conventional impinging jet at the radial location of R/D=0.5. With the increase of the nozzle-to-plate distance, the stagnation heat transfer rate is decreased due to the diminishing axial momentum of the swirling jet. However, the swirling impinging jet for all nozzle-to-plate spacings tested in this study does not enhance the average heat transfer rate.

비균일 온도분포를 갖는 평판에 대한 충돌제트의 열전달 및 난류유동특성에 관한 연구 (Experimental Study on the Heat Transfer and Turbulent Flow Characteristics of Jet Impinging the Non-isothermal Heating Plate)

  • 한충호;이계복;이충구;이창우
    • 에너지공학
    • /
    • 제10권3호
    • /
    • pp.272-277
    • /
    • 2001
  • 선형온도구배를 갖는 비균일 가열표면에 대한 충돌 제트의 난류유동장과 열전달 특성을 실험을 통해 연구하였다. 제트의 레이놀즈수와 가열판의 온도구배, 그리고 노즐 출구로부터 가열판가지의 거리를 변화시키며 실험을 수행하였다. 최대 열전달은 정체점에서 나타나고 정체점으로부터 벽면방향으로 거리가 증가함에 따라 열전달률은 감소한다. 벽면가지의 거리가 크지 않은 경우는 난류의 영향으로 열전달의 제2정점이 나타난다. 최대 열전달은 노즐과 가열판 사이의 거리가 노즐 직경의 6에서 8배 정도일 때 나타난다. 열전달률의 상관식을 프란틀수와 레이놀즈수, 노즐과 가열판사이의 거리와 직경비 그리고 온도구배의 지수승의 함수로 구하였다. 열전달률과 난류유동장의 관계를 실험을 통해 확인하였다. 벽면제트는 온도구배의 의해 영향을 받았고 벽면거리가 증가할수록 더 크게 나타났다.

  • PDF

고정식 소화장치 노즐조건에 따른 $CO_2 $전달특성 (The Characteristics of $CO_2 $ Extinguishant Transfer According to the Nozzle Conditions of a Fixed Eire System)

  • 박찬수;최주석;전철균
    • 한국화재소방학회논문지
    • /
    • 제18권2호
    • /
    • pp.41-48
    • /
    • 2004
  • 선박 기관실의 고정식 소화장치로 사용되는 $CO_2 $ 소화장치의 소화효과에 영향을 미칠 수 있는 인자 중 분사노즐위치를 변화시켜 이산화탄소 소화제 전달특성에 대한 전산모이실험을 3차원 비정상상태로 수행하였다. 노즐위치에 따라 유동장과 $CO_2$ 소화제 농도장을 계산하였다 소화제 분사노즐을 공간의 천장 중앙에 매치 한 경우, 천장에 형성되는 대칭 천장 제트가 대칭면에서 서로 부딪혀 저농도 하향 유동을 발생시켜 분사주위에는 규정농도 이하의 농도분포를 형성시킨다. 벽의 모서리에서는 소화제질량전달이 촉진되는 경향으로 인해 농도곡선은 모서리 부근에서 피크를 나타낸다.

상향 원형노즐 제트에 의한 하향 등온 원형평면에서의 열전달 현상에 관한 연구 (The Study on the Phenomenon of Heat Transfer on a Downward Isothermal Circular Surface by an Impinging of Upward Circular Nozzle Jet)

  • 이인재;엄용균
    • 설비공학논문집
    • /
    • 제28권11호
    • /
    • pp.450-457
    • /
    • 2016
  • While many studies on the heat transfer effect of an impinging jet have been published, most studies focus on the downward impinging jet. This study investigates the impinging jet heat transfer phenomenon when water at a temperature of $24^{\circ}C$ impinges on the downward isothermal circular plate at 60, 70, and $80^{\circ}C$ and when the upward round jet nozzle is 4, 6, and 8 mm diameter with a flow rate 3.6, 4.6, and 5.6 L/min, respectively, and when the ratio of the nozzle clearance/nozzle diameter (H/D) is 1. The results showed that, as the nozzle diameter decreases, the heat transfer coefficient increases at a constant flow rate. The correlation equation of $Nu_r$, $Pr_r$, and $Re_{jg}$ is obtained in the impinging and constant velocity flow region $(Nu_r/Pr^{0.4}_r)Dr=4.6[Re_{jg}(r/R_c)Dr]^{0.8}$ at all flow rates, in the deceleration and falling flow regions $(Nu_r/Pr^{0.4}_r)Dr=42.7{\mid}Re_{jg}(r/R_c)Dr-345.7{\mid}^{0.3}$ at 3.6 L/min, $(Nu_r/Pr^{0.4}_r)Dr=92.4{\mid}Re_{jg}(r/R_c)Dr-16.8{\mid}^{0.2}$ at 4.6 L/min, and $(Nu_r/Pr^{0.4}_r)Dr=322.4{\mid}Re_{jg}(r/R_c)Dr-536.2{\mid}^{0.01}$ at 5.6 L/min.