• Title/Summary/Keyword: Nozzle Length

Search Result 347, Processing Time 0.02 seconds

Performance Analysis of an Expansion Deflection Nozzle by Nozzle Length Reduction Method (노즐 길이 단축 방안에 따른 ED 노즐의 성능 분석)

  • Joomi Lee;Junsub Choi;Hwanil Huh
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.5
    • /
    • pp.11-23
    • /
    • 2022
  • For the design of the shortened ED(Expansion Deflection) nozzle, a numerical study of ED nozzle was performed according to the length reduction methods. The first method is to reduce the extension length of the ED nozzle with 80% bell nozzle length by 10%, 20% and 30%. The second method is to shorten the extension length by increasing the nozzle throat angle. Due to the increase in the curvature of the contour as the length shortened, the decrease in the nozzle exit velocity between the ED nozzle with 80% bell nozzle length and the ED nozzle in the first method was reduced, and the thrust become similar. The ED nozzle of the second method increased the thrust by increasing the nozzle exit velocity compared to the ED nozzle with 80% bell nozzle length.

A Study on the Exhaust Gas Recirculation in a MILD Combustion Furnace by Using the Coanda Nozzle Effect (MILD 연소로에서 Coanda 노즐 효과를 이용한 배기가스 재순환에 관한 연구)

  • Ha, Ji Soo;Shim, Sung Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.12
    • /
    • pp.967-972
    • /
    • 2013
  • A MILD (Moderate and Intense Low oxygen Dilution) combustion, which is effective in the reduction of NOx, is considerably affected by the recirculation flow rate of hot exhaust gas to the combustion furnace. The present study used the MILD combustor, which has coaxial cylindrical tube. The outside tube of the MILD combustor corresponds to the exhaust gas passage and the inner side tube is the furnace passage. A numerical analysis was accomplished to elucidate the characteristics of exhaust gas entrainment toward the inner furnace with the changes of coanda nozzle geometrical parameters, nozzle passage gap length, nozzle passage length, nozzle angle and expansion length. The optimal configuration of coanda nozzle for the best entrainment flow rate was gap length, 0.5 mm, expansion angle, 4o and expansion length, 146 mm. The nozzle passage length was irrelevant to the exhaust gas entrainement.

Supersonic Plug Nozzle Design and Comparison to the Minimum Length Nozzle Configuration

  • Zebbiche, Toufik;Youbi, ZineEddine
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.27-42
    • /
    • 2006
  • A method to design the contour and conception of a plug nozzle of arbitrary shape, but specified exit flow conditions is presented. Severals shapes can be obtained for exit Mach number by changing the specific heats ratio. The characteristics of the nozzle in terms of length, weight and pressure force exerted on the wall are compared to the Minimum Length Nozzle and found to be better. Our field of study is limited to the supersonic mode to not to have the dissociation of the molecules. The design method is based on the use of the Prandtl Meyer function of a perfect gas. The flow is not axial at the throat, which may be advantageous for many propulsion applications. The performance benefits of the plug nozzle compared to the Minimum Length Nozzle are also presented.

Effect of Nozzle Orifice Shape and Nozzle Length-to-Diameter Ratio on Internal and External Flow Characteristics of Diesel and Biodiesel Fuel (노즐 오리피스 형상 및 형상비가 디젤과 바이오디젤 연료의 노즐 내부 및 외부 유동특성에 미치는 영향)

  • Park, Su-Han;Suh, Hyun-Kyu;Lee, Chang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.3 s.258
    • /
    • pp.264-272
    • /
    • 2007
  • The aim of this study is to investigate the effects of nozzle orifice shapes and the nozzle length-to-diameter ratio(L/D) on the nozzle cavitation formation inside the orifice and the external flow pattern. The nozzle used in this work was tested the taper orifice nozzle and the rectangular orifice nozzle which was made from the transparent acrylic acid resin. For studying the effect of the nozzle L/D ratio, it was used to three L/D ratios of 3.33, 10, and 20. The cavitation flow of nozzle was visualized by using the ICCD camera and optical system. This work revealed that the flow rate and discharge coefficient($C_d$) of the taper orifice nozzle was larger than those of the rectangular orifice nozzle at the same injection pressure. The cavitation flow was observed in the nozzle orifice at the low injection pressure and the breakup of liquid jet was promoted as the L/D ratio is decreased. The cavitation of biodiesel fuel was formed at the lower injection pressure than that of diesel fuel because of higher viscosity and density.

The Effect of Convergent Nozzle Angle on a Spiral Jet Flow (스파이럴 제트 유동에 미치는 축소노즐 각도의 영향)

  • Cho, Wee-Bun;Baek, Seung-Cheol;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1482-1487
    • /
    • 2004
  • In general the swirl jet is generated by the injected flow that is forced to the tangential direction. A spiral nozzle which is composed of an annular slit and a convergent nozzle, is released the spiral jet that is generated by the radial flow injection through an annular slit. The objective of the present study is to investigate the additional study that is studied a changed the convergent nozzle angle and nozzle length. In the present computation, a finite volume scheme is used to solve three dimensional Navier-Stokes equations with RNG $k-{\varepsilon}$ turbulent model. The convergent nozzle angle and the nozzle length of the spiral nozzle are varied to obtain different spiral flows inside the conical convergent nozzle. The present computational results are compared with the previous experimental data. The results obtained show that the convergent nozzle angle and the nozzle length of the spiral jet strongly influence the characteristics of the spiral jets, such as a tangential and a jet width.

  • PDF

Prediction of Critical Reynolds Number in Stability Curve of Liquid Jet (II)

  • Lim, S.B.;So, J.D.;No, S.Y.
    • Journal of ILASS-Korea
    • /
    • v.4 no.2
    • /
    • pp.47-52
    • /
    • 1999
  • The prediction of the critical Reynolds number in the stability curie of liquid jet was mainly analyzed by the empirical correlations and the experimental data through the literature. The factors affecting the critical Reynolds number include Ohnesorge number, nozzle length-diameter ratio, ambient pressure and nozzle inlet type. The nozzle inlet type was divided into two groups according to the dependence of the critical Reynolds number on the length-to-diameter ratio of nozzle. The empirical correlations for the critical Reynolds number as a function of above factors mentioned are newly proposed.

  • PDF

Spray Characteristics of Electrostatic Pressure-Swirl Nozzle for Burner Application

  • Laryea, Gabriel Nii;No, Soo-Young
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.16-23
    • /
    • 2002
  • Electrostatic pressure-swirl nozzle for practical oil burner application has been designed. The charge injection method has been used in this design, where the nozzle consists of a sharp pointed tungsten wire as a charge injector and the nozzle body grounded. The spray characteristics of the nozzles have been investigated by using an insulating liquid, i.e. kerosene without active surface agent. Breakup length of liquid decreased with an increase in applied voltage and injection pressure, while the spray angle increased with an increased in both applied voltage and injection pressure. An empirical equations have been suggested to predict the breakup length for electrostatic pressure-swirl atomizer. The experimental result was within the range of the predicted equations. The SMD decreased between the ranges of 2.8 ${\sim}$ 33% when the conventional nozzle was compared to the electrostatic with -10 kV applied to the electrode at a radial distance from 5 to 20 mm.

  • PDF

Supersonic Axisymmetric Minimum Length Nozzle Conception at High Temperature with Application for Air

  • Zebbiche, Toufik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.1-30
    • /
    • 2008
  • When the stagnation temperature of a perfect gas increases, the specific heats and their ratio do not remain constant any more and start to vary with this temperature. The gas remains perfect; its state equation remains always valid, except, it is named in more by calorically imperfect gas. The aim of this work is to trace the profiles of the supersonic axisymmetric Minimum Length Nozzle to have a uniform and parallel flow at the exit section, when the stagnation temperature is taken into account, lower than the dissociation threshold of the molecules, and to have for each exit Mach number and stagnation temperature shape of nozzle. The method of characteristics is used with the algorithm of the second order finite differences method. The form of the nozzle has a point of deflection and an initial angle of expansion. The comparison is made with the calorically perfect gas. The application is for air.

Aerosol Deposition Nozzle Design for Uniform Flow Rate: Divergence Angle and Nozzle Length

  • Kim, Jae Young;Kim, Young Jin;Jeon, Jeong Eun;Jeon, Jun Woo;Choi, Beom Soo;Choi, Jeong Won;Hong, Sang Jeen
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.38-44
    • /
    • 2022
  • Plasma density in semiconductor fabrication equipment becomes higher to achieve the improved the throughput of the process, but the increase of surface corrosion of the ceramic coated chamber wall has been observed by the increased plasma density. Plasma chamber wall coating with aerosol deposition prefer to be firm and uniform to prevent the potential creation of particle inside the chamber from the deformation of the coating materials, and the aerosol discharge nozzle is a good control factor for the deposited coating condition. In this paper, we investigated the design of the nozzle of the aerosol deposition to form a high-quality coating film. Computational fluid dynamics (CFD) study was employed to minimize boundary layer effect and shock wave. The degree of expansion, and design of simulation approach was applied to found out the relationship between the divergence angle and nozzle length as the key parameter for the nozzle design. We found that the trade-off tendency between divergence angle and nozzle length through simulation and quantitative analysis, and present the direction of nozzle design that can improve the uniformity of chamber wall coating.

A Study on Prediction of On-line Type Pulse Air Jet Bag Filter Effective Pulsing Distance (연속탈진형 충격기류식 여과집진장치의 여과포 유효탈진거리 예측)

  • Jeong-Sam Son;Jeong-Min Suh;Jeong-Ho Park
    • Journal of Environmental Science International
    • /
    • v.32 no.8
    • /
    • pp.555-561
    • /
    • 2023
  • A study is to predict the effective pulsing distance following to the pulsing pressure, nozzle diameter, filtration velocity using numercial analysis techniques and use it as an efficient operation condition and economic data for on-line type pulse air jet bag filter. Filtration area 6 m2 condition, calculate filter resistance coefficient for simulation through the primary experiments using coke dust. For CFD simulation, analysis pulsing characteristics about nozzle diameter, filtration velocity and pulsing pressure. The maximum pulsing length of on-line type pulse air jet bag filter, in 10mm nozzle, filtration velocity 1.5m/min and pulsing pressure 5 bar conditions, is 2,285 mm, maximum length is 76.2% of the total filter bag, which is sufficient to pulsing. In 12mm nozzle, pulsing pressure 5 bar and filtration area 1.22 m2 conditions, the maximum pulsing length of on-line type pulse air jet bag filter is 1,744~2,952 mm, and the maximum length is 2,952 mm indicates pulsing air can be reached to the bottom of filter bag. When the nozzle diameter is increased 8mm to 10mm, maximum pulsing length is extended 40~47%, and increased 10mm to 12 mm, maximum pulsing length is extended 10~17%. For effective pulsing, over the 5bar of pulsing pressure and larger than 10 mm of nozzle diameter are required.