DOI QR코드

DOI QR Code

Performance Analysis of an Expansion Deflection Nozzle by Nozzle Length Reduction Method

노즐 길이 단축 방안에 따른 ED 노즐의 성능 분석

  • Joomi Lee (Department of Aerospace Engineering, Graduate School of Chungnam National University) ;
  • Junsub Choi (Department of Aerospace Engineering, Graduate School of Chungnam National University) ;
  • Hwanil Huh (Department of Aerospace Engineering, Chungnam National University)
  • Received : 2022.06.07
  • Accepted : 2022.10.15
  • Published : 2022.10.31

Abstract

For the design of the shortened ED(Expansion Deflection) nozzle, a numerical study of ED nozzle was performed according to the length reduction methods. The first method is to reduce the extension length of the ED nozzle with 80% bell nozzle length by 10%, 20% and 30%. The second method is to shorten the extension length by increasing the nozzle throat angle. Due to the increase in the curvature of the contour as the length shortened, the decrease in the nozzle exit velocity between the ED nozzle with 80% bell nozzle length and the ED nozzle in the first method was reduced, and the thrust become similar. The ED nozzle of the second method increased the thrust by increasing the nozzle exit velocity compared to the ED nozzle with 80% bell nozzle length.

길이를 단축한 ED(Expansion Deflection) 노즐의 설계를 위해 길이 단축 방안에 따른 ED 노즐의 수치적 연구를 수행하였다. 첫 번째 방안은 80% 벨 노즐 길이를 갖는 ED 노즐의 확장부 길이를 10%, 20%와 30%씩 단축하는 것이다. 두 번째 방안은 노즐 목 각도를 증가시켜 확장부 길이를 단축하는 것이다. 길이 단축에 따른 윤곽선의 곡률 증가로 인해 80% 벨 노즐 길이인 ED 노즐과 첫 번째 방안의 ED 노즐의 출구 유동 속도의 감소폭이 줄어들어 추력이 유사해졌다. 두 번째 방안의 ED 노즐은 80% 벨 노즐 길이인 ED 노즐보다 출구 유동 속도가 증가하여 추력이 증가하였다.

Keywords

Acknowledgement

본 논문은 2021년 정부(과학기술정보통신부)의 재원으로 한국연구재단 스페이스챌린지사업(NRF2021M1A3B8078915)의 지원을 받아 수행된 연구입니다.

References

  1. Hagemann, G., Immich, H., Nguyen, T. V. and Dumnow, G. E., "Advanced Rocket Nozzles," Journal of Propulsion and Power, Vol. 14, No. 5, pp. 620-634, 1998. https://doi.org/10.2514/2.5354
  2. Moon, T., Park, S., Choi, J. and Huh, H., "Research Trends of an E-D Nozzle for Altitude Compensation," Journal of the Korean Society for Aeronautical & Space Sciences, Vol. 45, No. 10, pp. 844-854, 2017. https://doi.org/10.5139/JKSAS.2017.45.10.844
  3. Taylor, N.V. and Sato, T., "Experimental and Computational Analysis of an Expansion Deflection Nozzle in Open-wake Mode," AIAA Aerodynamics Conference, H.I., U.S.A., AIAA 2008-6924, Aug. 2008.
  4. Rao, G.V.R., "Analysis of a New Concept Rocket Nozzles," Journal of Liquid Rockets and Propellants, Vol. 2, pp. 669-682, 1960.
  5. Taylor, N.V. and Hempsell C.M., "Throat Flow Modelling of Expansion Deflection Nozzles," JBIS, Vol. 57, pp. 242-250, 2004.
  6. Taylor, N.V., Hempsell C.M., Macfarlane, J., Osborne, R., Varcill, R., Bond, A. and Feast, S., "Experimental Investigation of the Evacuation Effect in Expansion Deflection Nozzles," Acta Astronautica, Vol. 66, No. 3-4, pp. 550-562, 2010. https://doi.org/10.1016/j.actaastro.2009.07.016
  7. Wagner, B. and Schelchtriem, S., "Numerical and Experimental Study of the Flow in a Planar Expansion-Deflection Nozzle," 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Cal., U.S.A., AIAA 2011-5942, Jul. 2011.
  8. Schomberg, K., Doig, G., Olsen, J. and Neely, A., "Geometric Analysis of the Linear Expansion-Deflection Nozzle at Highly Overexpanded Flow Conditions," 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, O.H., U.S.A., AIAA 2014-4001, Jul. 2014.
  9. Schomberg, K., Olsen, J. and Doig, G., "Analysis of a Low-Angle Anuular Expander Nozzle," Shock and Vibration, Vol. 2015, pp. 1-8, 2015. https://doi.org/10.1155/2015/675861
  10. Schomberg, K., Doig, G. and Olsen, J., "Numerical Analysis of a Linear ExpansionDeflection Nozzle at Open Wake Conditions," 16th Australasian International Aerospace Congress, M.E.L., A.U., pp. 493-498, Feb. 2015.
  11. Wang, G., Chen, L., Zhou, B., Guan, B., and Wang, G., "Numerical Investigation on Thrust Efficiency Dropping Phenomenon of Annular Expansion-Deflection Nozzles," Physics of Fluids, Vol. 33, No. 12, p. 126107, 2021.
  12. Wang, Y., Lin, Y., Eri, Q. and Kong, B., "Flow and Thrust Characteristics of an Expansion-Deflection Dual-Bell Nozzle," Aerospace Science and Technology, Vol. 123, p. 107464, 2022.
  13. Hwang, H. and Huh, H., "Numerical Study on Thrust Characteristics of an E-D Nozzle for Altitude Compensation," Journal of the Korean Society of Propulsion Engineers, Vol. 20, No. 3, pp. 87-95, 2016. https://doi.org/10.6108/KSPE.2016.20.3.087
  14. Park, S., Moon, T. and Huh, H., "Study of an E-D Nozzle Design Parameters for Altitude Compensation," Korean Society of Aeronautical and Space Science Fall Conference, Jeju, Korea, pp. 1162-1163, Nov. 2016.
  15. Moon, T., Park, S. and Huh, H., "Basic Numerical Study for Performance Analysis of an E-D nozzle according to the Minimum Distance," Korean Society of Propulsion Engineers Fall Conference, Busan, Korea, pp. 73-74, Nov. 2017.
  16. Moon, T. and Huh, H., "Evaluation of Payload Gain according to E-D Nozzle Length Reduction," Asia-Pacific International Symposium on Aerospace Technology, Seoul, Korea, pp. 485-487, Oct. 2017.
  17. Moon, T., Park, S., Choi, J. and Huh, H., "Performance Analysis of an ExpansionDeflection Nozzle According to Initial Angle of a Pintle," Europe-Korea Conference on Science and Technology, S.T.O., Sweden, Abstract 321, Jul. 2017.
  18. Park, S., Moon, T., and Huh, H., "Numerical Analysis and Preliminary Experimental Results of E-D Nozzle in Low Nozzle Pressure Ratios," Korean Society of Propulsion Engineers Fall Conference, Busan, Korea, pp. 71-72, Nov. 2017.
  19. Moon, T. and Huh, H., "Specific Impulse Gain for KSLV-II with Combination of Dual Bell Nozzle and Expansion-Deflection Nozzle," Journal of the Korean Society of Propulsion Engineers, Vol. 22, No. 1, pp. 16-27, 2018. https://doi.org/10.6108/KSPE.2018.22.1.016
  20. Choi, J., Moon, T., Choi, J., Park, S., Kim, H. and Huh, H., "Technology and patent Trends of Altitude Compensation Nozzles," Journal of the Korean Society for Aeronautical & Space Sciences, Vol. 46, No. 8, pp. 662-670, 2018.
  21. Park, S., Moon, T., and Huh, H., "Numerical Study on an E-D Nozzle Characteristics with Various Pintle Inflection Angles," Journal of the Korean Society of Propulsion Engineers, Vol. 22, No. 6, pp. 19-27, 2018.
  22. Lee, K. and Huh, H., "Fundamental Experimental Study of a 3D Printing E-D Nozzle after Improvement of Surface Roughness," Korean Society of Propulsion Engineers Spring Conference, Jeju, Korea, pp. 553-554, May 2018.
  23. Lee, K., Lee, Y., Park, S. and Huh, H., "Preliminary Results of E-D Nozzle Pneumatic Experiment using 3D Printer," Korean Society of Aeronautical and Space Science Fall Conference, Jeju, Korea, pp. 1201-1202, Nov. 2018.
  24. Kim, H., Lee, J. and Huh, H., "Conceptual Design of External Pintle Nozzle with Pintle Injector," Korean Society of Aeronautical and Space Science Fall Conference, Jeju, Korea, pp. 1199-1200, Nov. 2018.
  25. Lee, K., Choi, J. and Huh, H., "Analysis of E-D Nozzle Flow in Transition Nozzle Pressure Ratios," 10th National Congress on Fluid Engineering, Yeosu, Korea, Aug. 2018.
  26. Kim, H., Moon, T., Lee, J. and Huh, H., "Flow Characteristics through Numerical Analysis of External Pintle Nozzle with Nozzle Throat Angle," 10th National Congress on Fluid Engineering, Yeosu, Korea, Aug. 2018.
  27. Lee, K., Park, S., Koo, J., and Huh, H., "Experimental Study on a 3D Printed Altitude-Compensating Expansion-Deflection Nozzle for a Launch Vehicle," Journal of the Korean Society of Mechanical Engineers, Vol. 43, No. 12, pp. 859-869, 2019.
  28. Lee, K., Kim, H., Moon, T. and Huh, H., "Fundamental Numerical Study for Performance of E-D Rocket Nozzle according to the Pintle Design Parameters," 10th Asian-Pacific Conference on Aerospace Technology and Science & 4th Asian Joint Symposium on Aerospace Engineering, Hsin Chu, Taiwan, 2019-04-006, Aug. 2019.
  29. Kim, H., Lee, K. and Huh, H., "Design of External Pintle Nozzle with Pintle Injector for Methane Rocket Engine," US-Korea Conference on Science, Technology and Enterpreneurship, C.H., U.S.A., p. 196, Aug. 2019.
  30. Lee, K., Park, S. and Huh, H., "Experimental Study on an Expansion-Deflection Nozzle Characteristics according to the Pintle Inflection Angle," US-Korea Conference on Science, Technology and Enterpreneurship, C.H., U.S.A., p. 195, Aug. 2019.
  31. Lee, K., Kim, H. and Huh, H., "Fundamental Numerical of an Expansion-Deflection Nozzle according to the Base Nozzle Length," Europe-Korea Conference on Science and Technology, V.I.E., A.T., Abstract 229, Jul. 2019.
  32. Lee, K., Kim, H. and Huh, H., "Fundamental Numerical Study for Performance of an E-D Rocket Nozzle according to the Pintle Radius," Korean Society of Propulsion Engineers Fall Conference, Busan, Korea, pp. 729-730, Nov. 2019.
  33. Goetz, A., Hagemann, G., Kretschmer, J. and Schwane, R., "Advanced Upper Stage Propulsion Concept - The ExpansionDeflection Upper Stage," 41st AIAA/ASME/ SAE/ASEE Joint Propulsion Conference,&Exhibit, A.Z., U.S.A., AIAA 2005-3752, Jul. 2005.
  34. Lee, K., Kim, H., and Huh, H., "Possibility of Reducing Nozzle Length for the KSLV-II an External Pintle Nozzle," Korean Society of Propulsion Engineers Fall Conference, Busan, Korea, pp. 61-62, Nov. 2019.
  35. Sutton, G.P., Rocket Propulsion Elements, 6th ed., John Wiley & Sons Inc., New York, N.Y., U.S.A., 1992.
  36. Ansys, Inc., "ANSYS Fluent Theory Guide," Campmsburg, P.A., U.S.A., 2016.
  37. Jeon, T.J. and Park, T.S., "Effect of Nozzle Initial and Exit Wall Angles on Supersonic Flow Field in a Thrust Optimised Nozzle," Journal of the Korean Society of Propulsion Engineers, Vol. 25, No.3, pp. 1-13, 2021.
  38. Fouladi, N. and Farahani, M., "Numerical Inverstigation of Second Throat Exhaust Diffuser Performance with Thrust Optimised Parabolic Nozzles," Aerospace Science and Technology, Vol. 105, p. 106020, 2020.
  39. Takahashi, M., Ueda, S., Tomika, T., Takahashi, M. and Tamura, H., "Transient Flow Simulation of a Compressed Truncated Perfect Nozzle," 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, U.T., U.S.A., AIAA 2001-3681, Jul. 2001.