• Title/Summary/Keyword: Nozzle Injection Pressure

Search Result 331, Processing Time 0.034 seconds

Effect of nozzle diameter on the reduction of smoke emission from naval ship diesel engines (함정용 디젤엔진의 노즐 직경 변화가 매연 발생에 미치는 영향)

  • Son, Min-Soo;Choi, Jae-Sung;Cho, Kwon-Hae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.180-184
    • /
    • 2016
  • Legislative and regulatory actions regarding the exhaust gas from ships are being strengthened by both international organizations and national governments, to protect human health and the environment. Exhaust gas traps are excluded from exhaust gas regulation applications, but, recently, the United States, Britain, and other developed countries have examined a variety of ways to improve the system, including the introduction of electric propulsion systems to prevent air pollution generated by naval ships. This study investigates a large number of smoke problems of naval diesel engines to verify the effect of improving the nozzle characteristics. An exhaust gas emission measurement method to determine the quality of pollutant exhaust gas generated during low-load operation is proposed through the research methodology of the smoke problem. It was confirmed that the emissions value is improved by decreasing the nozzle hole diameter and increasing the injection pressure. At the same time, the flow rate decrease equation and setting up a test memo based on the nozzle diameter confirmed that the fuel consumption, to which the nozzle diameter in the flow path is related, is reduced.

A STUDY ON FLOW MIXING IMPROVEMENT OF SELECTIVE CATALYTIC REDUCTION USING GASEOUS REDUCTANT (기상 환원제를 사용하는 선택적 환원촉매에서 유동혼합 개선에 관한 연구)

  • Ko, S.C.;Lee, B.H.;Cho, S.H.;Lee, S.H.;Hong, S.T.;Lee, D.Y.
    • Journal of computational fluids engineering
    • /
    • v.15 no.1
    • /
    • pp.56-63
    • /
    • 2010
  • Since emission regulations for vehicles have become more stringent, SCR technology has drawn a strong attention in order to reduce NOx emissions. Optimal design of a reductant injection nozzle and a multi-hole plate located between the cone and catalyst is critical in that the uniform distribution of reductant is necessary to maximize the NOx conversion efficiency and minimize the slip of reductant in SCR. In this work, an LPG fuel(C3H8 in vapor state) was used as a reductant for LPG vehicles. A Realizable k-$\varepsilon$ model is used for turbulence, and SCR body is defined as porous media with inertia and viscous resistances measured in this work. Effect of the number of nozzle holes on the flow mixing index was analyzed, which revealed that a four hole nozzle shows the best performance in terms of uniformity of flow. An installment of a multi-hole plate at the entrance of catalyst was evaluated with flow mixing index, uniformity of flow, and pressure drop. A multi-hole plate with gradual hole diameter change in three steps showed the best uniformity of flow within the conditions suggested in this work.

Study on the Atomization Characteristics of a Counter-swirling Two-phase Atomizer with Variations of Swirl angle (역선회 이류체 미립화기의 선회각 변화에 따른 미립화 특성연구)

  • Kim, N.H.;Lee, S.G.;Ha, M.H.;Rho, B.J.;Kang, S.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.125-130
    • /
    • 2001
  • Experimental and analytical researches have been conducted on the twin-fluid atomizers for better droplet breakup during the past decades. But, the studies on the disintegration mechanism still present a great challenge to understand the drop behavior and breakup structure. In an effort to describe the aerodynamic behavior of the sprays issuing from the internal mixing counter-swirling nozzle, the spatial distribution of axial (U) radial (V) and tangential (W) components of droplet velocities are investigated across the radial distance at several axial locations of Z=30, 50, 80, 120 and 170mm, respectively. Experiments were conducted for the liquid flow rates which was kept constant at 7.95 g/s and the air injection pressures were varied from 20 kPa to 140 kPa. Counter-swirling internal mixing nozzles manufactured at angles of $15^{\circ},\;30^{\circ},\;45^{\circ}$ and $60^{\circ}$ the central axis with axi-symmetric tangential-drilled holes was considered. The distributions of velocities and turbulence intensities are comparatively analyzed. PDPA is installed to specify spray flows, which have been conducted along the axial downstream distance from the nozzle exit. Ten thousand of sampling data was collected at each point with time limits of 30 second. 3-D automatic traversing system is used to control the exact measurement. It is observed that the sprays with all swirl angle have the maximum SMD for on air injection pressure of 20 kPa and 140 kPa with centerline, respectively. The nozzle with swirl angle of $60^{\circ}$ has vest performance.

  • PDF

A study on the Manufacture of the CuO Powder from Copper Chloride Solution by Spray Pyrolysis Process (분무열분해법에 의한 구리염화물 용액으로부터 CuO 분말 제조에 관한 연구)

  • Yu, Jae-Geun;Park, Hui-Beom
    • Korean Journal of Materials Research
    • /
    • v.12 no.1
    • /
    • pp.58-67
    • /
    • 2002
  • In this study copper chloride(CuCl$_2$) solution was used as raw material to produce the fine copper oxide powder which has less than 1 $\mu\textrm{m}$ average particle size and has uniform particle size distribution by spray pyrolysis process. In the present study, the effects of reaction temperature, the injection speed of solution and air, the nozzle tip size and the concentration of raw material solution on the properties of produced powder were studied. The structure of the powder became much more compact with increasing the reaction temperature regardless of copper concentration of the raw material solution. The particle size of the powder increased accordingly with increasing the reaction temperature in case of 30 g/$\ell$ copper concentration of the solution. The particle size of the powder increased accordingly, and the surface structure of the powder became more porous with increasing the copper concentration of the raw material solution. When copper concentration in raw material solution was more than 100 g/$\ell$, all produced powder was CuCl regardless of reaction temperatures. When copper concentration in solution was below 30 g/$\ell$ and reaction temperature was higher than 90$0^{\circ}C$, CuO was the main phase. The surface of the powder tended to become porous with increasing the injection speed of solution. Particle size was increased and the surface of the powder showed severely disrupted state with increasing the nozzle tip size. The particle size was decreased and the particle size distribution was more uniform with increasing the air pressure through the nozzle.

A Numerical Analysis on Application of Laser Peening to Dissimilar Metal Welds in a Safety Injection Nozzle of Integral Reactor (일체형 원자로 안전주입 노즐 이종금속 용접부에 대한 레이저 피닝 적용의 수치 해석적 연구)

  • Seo, Joong-Hyun;Kim, Jong-Sung;Jhung, Myung-Jo;Ryu, Yong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.6
    • /
    • pp.599-608
    • /
    • 2012
  • A numerical analysis has been performed through implicit dynamic finite element analysis using the commercial package, ABAQUS in order to investigate effect of laser peening on welding residual stress mitigation of dissimilar metal welds in a safety injection nozzle of integral reactor. The implicit dynamic finite element analysis are compared with the previous experimental results. By comparison, it is identified that the implicit dynamic finite element analysis is valid for residual stress mitigation via laser peening. Implicit static finite element residual stress analysis has been performed for the dissimilar metal welds subject to inner repair welding. The analysis results represent that both axial and hoop residual stresses are tensile on inner surface of safety injection nozzle due to inner repair welding. Also Parametric study has performed to investigate effect of laser peening variables such as maximum impact pressure, duration time of pressure, spot diameter and peening direction on the welding residual stress mitigation. As a result, it is found that laser peening has the preventive maintenance effect to mitigate mainly residual stresses of region near inner surface.

Humidification of Air Using Water Injector and Cyclonic Separator (관 내 삽입 인젝터와 사이클론을 이용한 공기 가습)

  • Kim, Beom-Jun;Kim, Sung-Il;Byun, Su-Young;Kim, Min-Soo;Kim, Hyun-Yoo;Kwon, Hyuck-Ryul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.5
    • /
    • pp.491-498
    • /
    • 2010
  • Humidification of PEM fuel cells is necessary for enhancing their performance and lifetime. In this study, a humidification system was designed and tested; the system includes an air-supply tube (inner diameter: 75 mm) through which a nozzle can be directly inserted and a cyclonic separator for the removal of water droplets. Three types of nozzles were employed to study the influence of injection pressure, air flow rate, and spray direction on the humidification performance. To evaluate the humidification performance, the concept of humidification efficiency was defined. In the absence of an external heat source, latent heat for evaporation will be supplied by the own enthalpies of water and air. Thus, the amount of water sprayed from the nozzle is the most critical factor affecting the humidification efficiency. Water droplets were efficiently removed by a cyclonic separator, but re-entrainment occurred at high air flow rates. The absolute humidity and humidification efficiency were $21.29\;kJ/kg_{da}$ and 86.57%, respectively, under the following conditions: nozzle type PJ24; spray direction angle $90^{\circ}$; injection pressure 1200 kPa; air flow rate 6000 Nlpm.

Experimental Research of Multi-Stage Axial Compressor Stability Enhancement by Air Injection (다단 축류압축기의 안정성 개선을 위한 실험적 연구)

  • Lim, Young-Cheon;Lim, Hyung-Soo;Song, Seung-Jin;Kang, Shin-Hyoung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.378-381
    • /
    • 2009
  • A rotating stall, an instable phenomenon of compressor, brings about reducing the pressure rise, the efficiency of compressor and a mechanical demage. In order to improve instability and extend operating range, it was performed that a stability enhancement experiment applying air injection method at the 4-stage low-speed axial compressor. The coanda nozzle was used to inject air in axial direction at rotor tip and 8 injectors were set up at regular interval at the upstream of 1st stage rotor. At 80% speed, injectors were worked before rotating stall happened. As injecting the 5.4% air of mode inception flow rate, the stability of compressor operation enhanced about 4%.

  • PDF

Numerical analysis on the characteristics of disel spray for variation of injection spray angle and swirl ratio. (분사각 및 스월 변화에 따른 디젤분무의 특성에 관한 수치 해석)

  • Jung H.;Cha K. S.;Park C. G.
    • Journal of computational fluids engineering
    • /
    • v.5 no.3
    • /
    • pp.1-7
    • /
    • 2000
  • In high-pressure diesel engine, the injected fuel spray impinges on the piston cavity surface due to the short distance between the injection nozzle and the cavity wall. The behavior of the impinging spray has the great influence on the dispersion of fuel, the evaporation, and the mixture formation process. In this study, the numerical simulation using the GTT code was performed to study the gas flows, the spray behaviors, and the fuel vapor distributions in the combustion of a D.I engine for variation of spray angle and swirl ratio.

  • PDF

Visualization and Numerical Analysis of Non-evaporating Spray with a Swirl-Type GDI Injector (GDI 와류 분사노즐에 의한 비증발 분무의 가시화 및 수치해석)

  • 원영호;강수구
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.22-28
    • /
    • 2003
  • Predictions of the fuel spray dispersion and mixing processes are very important to improve the fuel consumption and exhaust emissions in GDI engines. Numerical and experimental analysis of the sprays with a swirl injector have been conducted. A numerical analysis is carried out using KIVA-II code with modified spray models. Experimental measurements are performed to show the global spray images and the local images near nozzle tip using laser sheet visualization technique. Computed and measured spray characteristics such as spray width, tip penetration are compared, and good agreements can be achieved. The spray head vortex is stronger as the injection pressure increases, but numerical calculations cannot show the head vortex properly.

Effect of Orifice Geometry on Flow Characteristics of Liquid Jet from Single Hole Nozzle (오리피스 형상에 따른 단공노즐 액체제트의 유동특성)

  • Song, Yoonho;Hwang, Donghyun;Ahn, Kyubok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.5
    • /
    • pp.19-28
    • /
    • 2017
  • Effects of cavitation and hydraulic flip in circular and elliptical nozzles on the flow characteristics have been studied. Spray tests were conducted using injectors with different ratios of an orifice length(L) to a diameter(d) and of a major axis diameter(a) to a minor axis diameter(b). With the increment of an injection pressure drop, discharge coefficients slightly decreased in cavitation flows, and those suddenly dropped and were almost constant in hydraulic flip flows. For elliptical nozzles with L/b > 8 and L/a < 8, discharge coefficients and flow patterns showed different results from those in previous circular nozzles. When a flow in the elliptical nozzle was under steady condition, as the liquid column went downstream from the nozzle, its spray angle a little decreased in the plane of a major axis and increased in the plane of a minor axis.