DOI QR코드

DOI QR Code

Effect of Orifice Geometry on Flow Characteristics of Liquid Jet from Single Hole Nozzle

오리피스 형상에 따른 단공노즐 액체제트의 유동특성

  • Song, Yoonho (School of Mechanical Engineering, Chungbuk National University) ;
  • Hwang, Donghyun (School of Mechanical Engineering, Chungbuk National University) ;
  • Ahn, Kyubok (School of Mechanical Engineering, Chungbuk National University)
  • Received : 2016.10.31
  • Accepted : 2017.01.25
  • Published : 2017.10.01

Abstract

Effects of cavitation and hydraulic flip in circular and elliptical nozzles on the flow characteristics have been studied. Spray tests were conducted using injectors with different ratios of an orifice length(L) to a diameter(d) and of a major axis diameter(a) to a minor axis diameter(b). With the increment of an injection pressure drop, discharge coefficients slightly decreased in cavitation flows, and those suddenly dropped and were almost constant in hydraulic flip flows. For elliptical nozzles with L/b > 8 and L/a < 8, discharge coefficients and flow patterns showed different results from those in previous circular nozzles. When a flow in the elliptical nozzle was under steady condition, as the liquid column went downstream from the nozzle, its spray angle a little decreased in the plane of a major axis and increased in the plane of a minor axis.

본 연구에서는 원형 노즐과 타원형 노즐을 이용하여 공동현상과 수력튀김 현상이 유동특성에 어떠한 영향을 미치는지 파악하고자 하였다. 이를 위해 오리피스 길이 대 직경비(L/d)와 타원형 노즐의 종횡비(a/b)가 서로 다른 분사기들을 제작하여 분무실험을 수행하였다. 분사압력 증가에 따라 공동현상이 발생할 경우 유량계수가 서서히 감소하였으나 수력튀김 영역에서는 유량계수가 급격히 떨어진 후 일정한 값을 유지함을 확인하였다. 하지만 타원형 노즐에서 장축지름(a)과 단축지름(b) 대비 오리피스 길이의 비인 L/b가 8 이상, L/a가 8 이하인 경우, 유량계수 및 액체제트 형상은 기존의 원형 노즐과는 상당히 다른 결과를 나타내었다. 정상유동 상태인 경우 타원형 노즐에서 분사된 액주는 원형 노즐과는 달리 하류로 가면서 장축에서는 분무각이 감소하였으며 단축에서는 분무각이 커지는 모습을 보였다.

Keywords

References

  1. Schmidt, D.P. and Corradini, M.L., "Analytical Prediction of the Exit Flow of Cavitation Orifices," Atomization and Sprays, Vol. 7, No. 6, pp. 603-616, 1997. https://doi.org/10.1615/AtomizSpr.v7.i6.30
  2. Soteriou, C., Andrews, R. and Smith, M., "Direct Injection Diesel Sprays and the Effect of Cavitation and Hydraulic Flip on Atomization," SAE Technical Paper 950080, 1995.
  3. Soteriou, C., Andrews, R. and Smith, M., "Further Studies of Cavitation and Atomization in Diesel Injection," SAE Technical Paper 1999-01-1486, 1999.
  4. Yunyi, G., Changwen, L., Yezhou, H. and Zhijun, P., "An Experimental Study on Droplet Size Characteristics and Air Entrainment of Elliptic Sprays," SAE Technical Paper 982546, 1998.
  5. Kasyap, T.V., Sivakumar, D. and Raghunandan, B.N., "Flow and Breakup Characteristics of Elliptical Liquid Jets," International Journal of Multiphase Flow, Vol. 35, No. 1, pp. 8-19, 2009. https://doi.org/10.1016/j.ijmultiphaseflow.2008.09.002
  6. Hong, J., Ku, K., Kim, S. and Lee, C., "Effect of Cavitation in Circular Nozzle and Elliptical Nozzles on the Spray Characteristic," Atomization and Sprays, Vol. 20, No. 10, pp. 877-886, 2010. https://doi.org/10.1615/AtomizSpr.v20.i10.40
  7. Hong, J., Ku, K. and Lee, C., "Numerical Simulation of the Cavitating Flow in an Elliptical Nozzle," Atomization and Sprays, Vol. 21, No. 3, pp. 237-248, 2011. https://doi.org/10.1615/AtomizSpr.2011003127
  8. Ku, K., Hong, J. and Lee, C., "Effect of Internal Flow Structure in Circular and Elliptical Nozzles on Spray Characteristics," Atomization and Sprays, Vol. 21, No. 8, pp. 655-672, 2011. https://doi.org/10.1615/AtomizSpr.2012004192
  9. Wu, P.K., Miranda, R.F. and Faeth, G.M., "Effects of Initial Flow Conditions on Primary Breakup of Nonturbulent and Turbulent Round Liquid Jets," Atomization and Sprays, Vol. 5, No. 2, pp. 175-196, 1995. https://doi.org/10.1615/AtomizSpr.v5.i2.40
  10. Tamaki, N., Shimizu, M., Nishida, K. and Hiroyasu, H., "Effects of Cavitiation and Internal Flow on Atomiztation of a Liquid Jet," Atomization and Sprays, Vol. 8, No. 2, pp. 179-197, 1998. https://doi.org/10.1615/AtomizSpr.v8.i2.30
  11. Lefebvre, A.H., Atomization and Sprays, Hemisphere Publishing Corporation, Bristol, P.A., U.S.A., 1989.
  12. Ahn, K., Kim, J. and Yoon, Y., "Effects of Orifice Internal Flow on Transverse Injection into Subsonic Crossflows: Cavitation and Hydraulic Flip," Atomization and Sprays, Vol. 16, No. 1, pp. 15-34, 2006. https://doi.org/10.1615/AtomizSpr.v16.i1.20
  13. Song, J., Ahn, K., Kim, M.K. and Yoon, Y., "Effects of Orifice Internal Flow on Liquid Jets in Subsonic Crossflows," Journal of Propulsion and Power, Vol. 27, No. 3, pp. 608-619, 2011. https://doi.org/10.2514/1.B34011
  14. No, S.Y., "Empirical Correlations for Breakup Length of Liquid Jet in Uniform Cross Flow - A Review," Journal of ILASS-Korea, Vol. 18, No. 1, pp. 35-43, 2013. https://doi.org/10.15435/JILASSKR.2013.18.1.035
  15. No, S.Y., "A Review on Empirical Correlations for Jet/Spray Trajectory of Liquid Jet in Uniform Cross Flow," International Journal of Spray and Combustion Dynamics, Vol. 7, No. 4, pp. 283-314, 2015. https://doi.org/10.1260/1756-8277.7.4.283
  16. Song, Y. and Ahn, K., "Effect of Orifice Geometry on Spray Characteristics of Liquid Jet into Subsonic Crossflows," Annual Conference of ILASS-Korea, Jeju, Korea, pp. 47, Oct. 2016.
  17. Vennard, J.K., Elementary Fluid Mechanics, John Wiley & Sons Inc., New York, N.Y., U.S.A., 1961.
  18. Nurick, W.H., "Orifice Cavitation and Its Effects on Spray Mixing," Journal of Fluid Engineering, Vol. 98, No. 4, pp. 681-687, 1976. https://doi.org/10.1115/1.3448452

Cited by

  1. Spray Characteristics of Liquid Jets in Acoustically-Forced Crossflows vol.22, pp.2, 2018, https://doi.org/10.6108/KSPE.2018.22.2.001
  2. Effect of Orifice Geometry on Column Trajectories of Liquid Jets in Crossflows pp.2093-2480, 2019, https://doi.org/10.1007/s42405-018-0130-3