DOI QR코드

DOI QR Code

Humidification of Air Using Water Injector and Cyclonic Separator

관 내 삽입 인젝터와 사이클론을 이용한 공기 가습

  • Kim, Beom-Jun (School of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.) ;
  • Kim, Sung-Il (School of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.) ;
  • Byun, Su-Young (District Heating Technology Institute, Korea District Heating Corp.) ;
  • Kim, Min-Soo (School of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.) ;
  • Kim, Hyun-Yoo (Advanced Technology Center, Hyundai.Kia Motors) ;
  • Kwon, Hyuck-Ryul (Advanced Technology Center, Hyundai.Kia Motors)
  • 김범준 (서울대학교 기계항공공학부) ;
  • 김성일 (서울대학교 기계항공공학부) ;
  • 변수영 (한국지역난방공사 지역난방기술연구소) ;
  • 김민수 (서울대학교 기계항공공학부) ;
  • 김현유 ((주) 현대-기아자동차 연구개발총괄본부) ;
  • 권혁률 ((주) 현대-기아자동차 연구개발총괄본부)
  • Received : 2009.09.25
  • Accepted : 2010.03.08
  • Published : 2010.05.01

Abstract

Humidification of PEM fuel cells is necessary for enhancing their performance and lifetime. In this study, a humidification system was designed and tested; the system includes an air-supply tube (inner diameter: 75 mm) through which a nozzle can be directly inserted and a cyclonic separator for the removal of water droplets. Three types of nozzles were employed to study the influence of injection pressure, air flow rate, and spray direction on the humidification performance. To evaluate the humidification performance, the concept of humidification efficiency was defined. In the absence of an external heat source, latent heat for evaporation will be supplied by the own enthalpies of water and air. Thus, the amount of water sprayed from the nozzle is the most critical factor affecting the humidification efficiency. Water droplets were efficiently removed by a cyclonic separator, but re-entrainment occurred at high air flow rates. The absolute humidity and humidification efficiency were $21.29\;kJ/kg_{da}$ and 86.57%, respectively, under the following conditions: nozzle type PJ24; spray direction angle $90^{\circ}$; injection pressure 1200 kPa; air flow rate 6000 Nlpm.

연료전지 자동차는 성능과 수명 측면에서, 전해질막의 가습이 필요하며, 이를 위해 반응기체인 공기, 수소의 높은 가습이 요구된다. 본 연구에서는 내경 75 mm공기공급관 내에 직접 삽입된 인젝터(노즐)과 액적제거를 위한 사이클론을 통한 가습장치를 고안하여 실험을 수행하였다. 충돌형 노즐 3 종류를 이용하여 분사압력, 공기 유량, 분사방향각도를 달리하여 실험을 수행하였다. 가습 성능을 분석하기 위해, 가습효율이라는 개념을 정의하였다. 별도의 외부 열공급원 없이 분사되는 물과 공기의 엔탈피가 자체 기화열 공급원으로, 분사되는 물의 양이 가습에 가장 중요한 변수임을 볼 수 있었다. 사이클론은 높은 공기유량에서 재비산이 발생되는 것을 볼 수 있었다. 노즐타입 PJ24, 분사방향 각도 90도, 분사압력 1200 kPa, 공기 유량 6000 nlpm에서 절대습도 $21.29\;kJ/kg_{da}$, 가습 효율 86.57%를 얻을 수 있었다.

Keywords

References

  1. Jung, S. H., Kim, S. L., Kim M. S., Park, Y. S. and Lim, T. W., 2007, “Experimental Study of Gas Humidification with Injectors for Automotive PEM Fuel Cell Systems,” J. of Power Sources, Vol. 170, Issue 2, pp. 324-333. https://doi.org/10.1016/j.jpowsour.2007.04.013
  2. Yoo, S. Y. and Kwon, H. K., 2004, “An Experimental Study on the Performance of Air/Water Direct Contact Air Conditioning System,” J. of Mechanical Science and Technology, Vol. 18, No. 6, pp. 1002-1009.
  3. Sureshkumar, R., Kale, S.R. and Dhar, P.L., 2008, “Heat and Mass Transfer Processes Between a Water Spray and Ambient Air I. Experimental Data,” Applied Thermal Engineering, Vol. 28, Issues 5-6, pp. 349-360.
  4. Sureshkumar, R., Kale, S.R. and Dhar, P.L., 2008, “Heat and Mass Transfer Processes Between a Water Spray and Ambient Air II. Simulations,” Applied Thermal Engineering, Vol. 28, Issues 5-6, pp. 361-371. https://doi.org/10.1016/j.applthermaleng.2007.09.015
  5. Xu, Z. and Wang, Y., c, “Experimental and Theoretical Studies on Air Humidification by a Water Spray at Elevated Pressure,” Applied Thermal Engineering, Vol. 27, Issues 14-15, pp. 2549-2558. https://doi.org/10.1016/j.applthermaleng.2007.01.032
  6. Bruckner, A. P. and Mattick, A. T., 1984, “High Effectiveness Liquid Droplet/Gas Heat Exchanger for Space Power Applications,” Acta Astronautica, Vol. 11, Issues 7-8, pp. 519-526. https://doi.org/10.1016/0094-5765(84)90091-2
  7. Rosa, E. S., França, F. A. and Ribeiro, G. S., 2001, “The Cyclone Gas Liquid Separator: Operation and Mechanistic Modeling,” J. of Petroleum Science and Engineering, Vol. 32, Issues 2-4, pp. 87-101. https://doi.org/10.1016/S0920-4105(01)00152-8
  8. Polyakov, L. E., 1968, “Cyclone Separators for Gas-Liquid Mixtures,” Chemical and Petroleum Engineering, Vol. 4, No. 6, pp. 6-8.
  9. American Society of Heating, Refrigerating, Air-Conditioning Engineers, 2005, “ASHRAE Handbook Fundamentals,” Chap. 6.