• 제목/요약/키워드: Novel metal

검색결과 637건 처리시간 0.026초

Image Denoising for Metal MRI Exploiting Sparsity and Low Rank Priors

  • Choi, Sangcheon;Park, Jun-Sik;Kim, Hahnsung;Park, Jaeseok
    • Investigative Magnetic Resonance Imaging
    • /
    • 제20권4호
    • /
    • pp.215-223
    • /
    • 2016
  • Purpose: The management of metal-induced field inhomogeneities is one of the major concerns of distortion-free magnetic resonance images near metallic implants. The recently proposed method called "Slice Encoding for Metal Artifact Correction (SEMAC)" is an effective spin echo pulse sequence of magnetic resonance imaging (MRI) near metallic implants. However, as SEMAC uses the noisy resolved data elements, SEMAC images can have a major problem for improving the signal-to-noise ratio (SNR) without compromising the correction of metal artifacts. To address that issue, this paper presents a novel reconstruction technique for providing an improvement of the SNR in SEMAC images without sacrificing the correction of metal artifacts. Materials and Methods: Low-rank approximation in each coil image is first performed to suppress the noise in the slice direction, because the signal is highly correlated between SEMAC-encoded slices. Secondly, SEMAC images are reconstructed by the best linear unbiased estimator (BLUE), also known as Gauss-Markov or weighted least squares. Noise levels and correlation in the receiver channels are considered for the sake of SNR optimization. To this end, since distorted excitation profiles are sparse, $l_1$ minimization performs well in recovering the sparse distorted excitation profiles and the sparse modeling of our approach offers excellent correction of metal-induced distortions. Results: Three images reconstructed using SEMAC, SEMAC with the conventional two-step noise reduction, and the proposed image denoising for metal MRI exploiting sparsity and low rank approximation algorithm were compared. The proposed algorithm outperformed two methods and produced 119% SNR better than SEMAC and 89% SNR better than SEMAC with the conventional two-step noise reduction. Conclusion: We successfully demonstrated that the proposed, novel algorithm for SEMAC, if compared with conventional de-noising methods, substantially improves SNR and reduces artifacts.

금속 CMP 공정시 경질 다공성 패드의 적용 (Application of Hard Porous Pad in Metal CMP Process)

  • 김상용;김남훈;김인표;장의구
    • 한국전기전자재료학회논문지
    • /
    • 제16권5호
    • /
    • pp.385-389
    • /
    • 2003
  • There are four main components of the CMP process: polishing pad, slurry, elastic supporter, and pad conditioner. The polishing pad is an essential component to the reproducibility of polishing uniformity in CMP process. However, the polishing pad in recently using metal CMP raised the several points of high cost caused by the increase of cycle time and the many usage of slurry. It is necessary to develop the novel polishing pad which would lead the cost reduction by the higher pad life-cycle, minimized cycle time and lower slurry usage. The characteristics of polishing pad were studied on the effects of different sets of the Polishing pad, which can be applied to metal chemical mechanical polishing process for global planarization of multilevel interconnection structure. The main purpose of this experiment is cost reduction by the increase of pad life-time, the decrease of cycle time and the lower usage of slurry through the specific hard porous structured pad design. It is confirmed that the novel polishing pad made the slurry usage decrease to 60% as well as the pad life-time increase twice with the 25% improvement of removal rate. The polishing time could be decreased and it also helped the cycle time to diminish. It can be expected that this results will help both the process throughput and the device yield to be improved.

Net-shape Manufacturing of Micro Porous Metal Components by Powder Injection Molding

  • Nishiyabu, Kazuaki;Matsuzaki, Satoru;Tanaka, Shigeo
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.93-94
    • /
    • 2006
  • A novel production method for porous metal components has been developed by applying powder space holder (PSH) method to metal powder injection molding (MIM) process. The PSH-MIM method has an industrial competitive advantage that is capable of net-shape manufacturing the micro-sized porous metal products with complicated shapes and controlled porosity and pore size. In this study, the small impeller with homogeneous micro-porous structure was manufactured by the PSH-MIM method. The effects of combinations in size and fraction of PMMA particle on dimensional tolerance and variation of sintered porous specimens were investigated. It was concluded that the PSH-MIM method could manufacture commercially microporous metal components with high dimensional accuracy.

  • PDF

PET Fabric Supported Fixed Site Carrier Membrane for Selective Metal ion Transport

  • Jin, Long Yi;Mah, Soukil
    • Fibers and Polymers
    • /
    • 제3권1호
    • /
    • pp.14-17
    • /
    • 2002
  • Development of a novel fixed site carrier membrane (FCM), supported by PET fabric for metal ion separation is reported. The membranes were prepared by dipping PET fabric into the methylene chloride solution of Poly(5-vinyl-m-phe-nylene-m'-phenylene-32-crown-10) (P(VCE)), a polymeric metal ion carrier. It was found that the flux of mono-valent metal ion transported across the membrane is signif=cantly differed from each other and the flux decreases in the order $Cs^+$>$Rb^+$>$K^+$>$Na^+$>$Li^+$ irrespective to the anion except perchlorate anion. It was explained in terms of the stability of the complex, formed by crown ether unit of the P(VCE) and the various metal ions, meanwhile, the lower rate of transport in the presence of perchlorate anion was ascribed to its low hydrophilicity.

인접 Pd-MILC가 Ni-MILC에 미치는 영향 (Effect of Adjacent Pd on Ni-MILC)

  • 김영수;김민선;오현욱;최성희;주승기
    • 한국세라믹학회지
    • /
    • 제41권8호
    • /
    • pp.578-581
    • /
    • 2004
  • 본 연구에서는 Palladium-Metal Induced Lateral Crystallization(Pd-MILC)과 Nickel-Metal Induced Lateral Crystallization (Ni-MILC)을 동시에 사용하여 Ni-MILC의 결정화 속도를 향상시키는 방법을 제안하였다 이 방법을 사용하여 기존의 Ni-MILC 보다 거의 4배나 빠른 결정화 속도인 15 $\mu$m/h를 얻을 수 있었다. Ni과 Pd의 간격이 좁을수록 Ni-MILC의 결정화 속도가 더 빨라졌으며 Pd두께, Ni두께에, 비정질 실리콘 너비와는 큰 의존관계가 없었다. 하지만 Pd이 Ni에 의해 덮혀져 Pd-MILC가 일어나지 못하는 경우에는 이러한 현상이 발견되지 않았다. 이는 Pd물질 그 자체가 Ni-MILC를 향상시키는 것이 아니라 Pd MILC가 진행되면서 발생하는 tensile stress에 의해 향상되는 것임을 의미한다. 이와 같은 현상들을 새로운 MILC mechanism으로 설명하였다.

Diversification and domain evolution of molluskan metallothioneins: a mini review

  • Nam, Yoon Kwon;Kim, Eun Jeong
    • Fisheries and Aquatic Sciences
    • /
    • 제20권6호
    • /
    • pp.8.1-8.18
    • /
    • 2017
  • Background: Metallothionein (MT) is a multifunctional protein playing important roles in homeostatic regulation and detoxification of metals. Mollusk species have been considered as useful sentinel platforms for MT-based biomarker approaches, and they have been reported to display an extraordinary structural diversity of MT proteins. However, potential diversity of molluskan MTs has not been fully explored and recent updates have suggested the need of revision of evolutionary hypothesis for molluskan MTs. Results: Based on bioinformatic analysis and phylogenetic evidences, novel divergence mechanisms and paths were hypothesized in both gastropod and bivalve MT groups. Our analyses are suggestive of the taxon- or lineage-specific domain multiplication/duplication from the ancestral or prototypic MT. Diversification and selection of molluskan MTs might be driven by the needs for acquiring metal selectiveness, specialized novel function, and improved capacity of metal detoxification under environmentally stressed conditions. Conclusion: The structural diversity and variations of molluskan MTs are significantly larger than previously understood. Undoubtedly, molluskan MTs have undergone dynamic divergent processes in their evolutionary histories, giving rise to the great diversity of domain structures in extant MT isoforms. Novel evolutionary paths for molluskan MTs newly proposed in this review could shed additional light onto the revision of the hypothesis for evolutionary differentiation of MTs in the molluskan lineage.

Novel properties of erbium-silicided n-type Schottky barrier metal-oxide-semiconductor field-effect-transistors

  • Jang, Moon-Gyu;Kim, Yark-Yeon;Shin, Jae-Heon;Lee, Seong-Jae;Park, Kyoung-Wan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제4권2호
    • /
    • pp.94-99
    • /
    • 2004
  • silicided 50-nm-gate-length n-type Schottky barrier metal-oxide-semiconductor field-effect-transistors (SB-MOSFETs) with 5 nm gate oxide thickness are manufactured. The saturation current is $120{\mu}A/{\mu}m$ and on/off-current ratio is higher than $10^5$ with low leakage current less than $10{\mu}A/{\mu}m$. Novel phenomena of this device are discussed. The increase of tunneling current with the increase of drain voltage is explained using drain induced Schottky barrier thickness thinning effect. The abnormal increase of drain current with the decrease of gate voltage is explained by hole carrier injection from drain into channel. The mechanism of threshold voltage increase in SB-MOSFETs is discussed. Based on the extracted model parameters, the performance of 10-nm-gate-length SB-MOSFETs is predicted. The results show that the subthreshold swing value can be lower than 60 mV/decade.