• 제목/요약/키워드: Novel metal

검색결과 658건 처리시간 0.036초

Algorithm of Modified Single-slope A/D Converter with Improved Conversion Time for CMOS Image Sensor System

  • Lee, Sang-Hoon;Kim, Jin-Tae;Shin, Jang-Kyoo;Choi, Pyung
    • 센서학회지
    • /
    • 제24권6호
    • /
    • pp.359-363
    • /
    • 2015
  • This paper proposes an algorithm that reduces the conversion time of a single-slope A/D converter (SSADC) that has n-bit resolution, which typically is limited by conversion time taking up to $2^n$ clock cycles for an operation. To improve this situation, we have researched a novel hybrid-type A/D converter that consists of a pseudo-pipeline A/D converter and a conventional SSADC. The pseudo-pipeline A/D converter, using a single-stage of analog components, determines the most significant bits (MSBs) or upper bits and the conventional SSADC determines the remaining bits. Therefore, the modified SSADC, similar to the hybrid-type A/D converter, is able to significantly reduce the conversion time because the pseudo-pipeline A/D converter, which determines the MSBs (or upper bits), does not rely on a clock. The proposed A/D converter was designed using a $0.35-{\mu}m$ 2-poly 4-metal standard complementary metal oxide semiconductor (CMOS) technology process; additionally, its characteristics were simulated.

펩타이드 질량 분석을 위한 전기 이온화 분사기의 제작 및 성능 평가 (Mass spectrometry analysis system with integrated micro electrospray ionization emitter for peptide detection)

  • 김민수;주황수;김병기;김용권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1534-1535
    • /
    • 2007
  • This paper describes a novel microfluidic device with a microfabricated electrospray source for a sheathless electrospray ionization interface to a mass spectrometer. This electrospray ionization-mass spectrometry (ESI-MS) device consists of a triangular-shaped metal emitter, allowing the generation of an efficient electrospray for peptide detection, and microfluidic channels monolithically in a glass microchip. The performance of the proposed interface was evaluated by opimizing its experimental condition and spraying standard peptides. The spraying has high signal strength and stability, with a relative standard deviation of 2.9% and singly-charged and doubly-charged peaks of the peptides were successfully detected. The metal emitter source showed a good performance to be comparable to commercially available emitters in signal strength and stability.

  • PDF

Development of diverse fluorides source for applicable F-18 radiofluorination method

  • Park, Su Hong;Kim, Dong Wook
    • 대한방사성의약품학회지
    • /
    • 제2권1호
    • /
    • pp.17-21
    • /
    • 2016
  • Alkali metal fluoride sources (MFs) such as potassium fluoride (KF) have been widely used as a fluoride source in the nucleophilic displacement reaction. However, they have low solubility and nucleophilicity in most of the organic solvents. Bulky fluoride sources such as tetrabutylammonium fluoride (TBAF) were substituted for MFs to improve these properties. However, hygroscopic property of TBAF makes it less convenient for handling as well as its strong basic property can make the side-reaction occur. Recently, novel fluoride sources have been developed to solve these problems. In this paper, we would like to introduce coordinated fluoride sources as a new fluoride sources such as tetrabutylammonium tetra(t-butyl alcohol)-coordinated fluoride, crown ether metal complex fluoride, and various bulky alcohols coordinated fluoride complexes. In particular, bulky alcohol coordinated fluoride source could generated by the controlled hydrogen-bonded of fluoride with alcohols and these fluoride sources have better stability and reactivity with showing low hygroscopic property. The study of these fluoride sources will help to understand the characteristic of [$^{18}F$]fluoride for increasing the radiochemical yield in the [$^{18}F$]radiofluorination.

3차원 소자를 위한 개선된 소오스/드레인 접촉기술

  • 안시현;공대영;박승만;이준신
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.248-248
    • /
    • 2010
  • CMOS 축소화가 32nm node를 넘어서 지속적으로 진행되기 위하여 FinFET, Surround Gate and Tri-Gate와 같은 Fully Depleted 3-Dimensional 소자들이 SCE를 다루기 위해서 많이 제안되어 왔다. 하지만 소자의 축소화를 진행함에 있어서 좁고 균일한 patterning을 형성하는 것과 동시에 낮은 Extension Region과 Contact Region에서의 Series Resistance을 제공하여야 하고 Source/Drain Contact Formation을 확보하여야 한다. 그리고 소자의 축소화가 진행됨으로써 Silicide의 응집현상과 Source/Drain Junction의 누설전류에 대한 허용범위가 점점 엄격해지고 있다. ITRS 2005에 따르면 32nm CMOS에서는 Contact Resistivity가 대략 $2{\times}10-8{\Omega}cm2$이 요구되고 있다. 또한 Three Dimensional 소자에서는 Fin Corner Effect가 Channel Region뿐만 아니라 S/D Region에서도 중대한 영향을 미치게 된다. 따라서 본 논문에서 제시하는 Novel S/D Contact Formation 기술을 이용하여 Self-Aligned Dual/Single Metal Contact을 이루어Patterning에 대한 문제점 해결과 축소화에 따라 증가하는 Contact Resistivity 문제점을 해결책을 제시하고자 한다. 이를 검증하기3D MOSFET제작하고 본 기술을 적용하고 검증한다. 또한 Normal Doping 구조를 가진3D MOSFET뿐만 아니라 SCE를 해결하기 위해서 대안으로 제시되고 있는 SB-MOSFET을 3D 구조로 제작하고, 이 기술을 적용하여 검증한다. 그리고 Silvaco simulation tool을 이용하여 S/D에 Metal이 Contact을 이루는 구조가 Double type과 Triple type에 따라 Contact Resistivity에 미치는 영향을 미리 확인하였고 이를 실험으로 검증하여 소자의 축소화에 따라 대두되는 문제점들의 해결책을 제시하고자 한다.

  • PDF

Synthesis and Characterization of Palladium and Platinum Complexes of N,N'-Bis[2'-(diphenylphosphino)phenyl]propane-1,3-diamine. Single-Crystal Structures of $[Pd(Ph_2PC_6H_4NC_3H_6NC_6H_4PPh_2)]$ and $[Pt(Ph_2PC_6H_4NH)(SEt_2)Cl]$

  • 유동원;김은진;강상옥;고재정;이승희
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권5호
    • /
    • pp.565-568
    • /
    • 1998
  • Novel mononuclear metal complexes with the formula $[M(Ph_2PC_6H_4NC_3H_6NC_6H_4PPh_2)]$ (M=Pd (1); M=Pt (2)) were obtained when N,N'-bis[2'-(diphenylphosphino)phenyl]propane-1,3-diamine, I was mixed with cisdichlorobis(diethylsulfide)palladium and platinum in the presence of NEt3. Two mononuclear metal compounds with the fomula [M(Ph2PC6H4NH)(SEt2)Cl] (M=Pd (3); M=Pt (4)) were synthesized from $M(SEt_2)2Cl_2$ and N-(2'-diphenylphosphinophenyl)-4-amino-1,1,1,5,5, 5-hexafluoro-3-penten-2-one, II by the elimination reaction of hexafluoro pentenone. The X-ray single crystal structures of 1 and 4 are described. X-ray single crystal diffraction analyses reveal that compound 1 is a mononuclear palladium compound with P,N,N,P-coordination mode and 4 is a mononuclear platinum compound with P,N-coordination mode.

Mathematical modeling to simulate the adsorption and internalization of copper in two freshwater algae species, Pseudokirchneriella subcapitata and Chlorella vulgaris

  • Kim, Yongeun;Lee, Minyoung;Hong, Jinsol;Cho, Kijong
    • 환경생물
    • /
    • 제39권3호
    • /
    • pp.298-310
    • /
    • 2021
  • Prediction of the behavior of heavy metals over time is important to evaluate the heavy metal toxicity in algae species. Various modeling studies have been well established, but there is a need for an improved model for predicting the chronic effects of metals on algae species to combine the metal kinetics and biological response of algal cells. In this study, a kinetic dynamics model was developed to predict the copper behavior(5 ㎍ L-1, 10 ㎍ L-1, and 15 ㎍ L-1) for two freshwater algae (Pseudokirchneriella subcapitata and Chlorella vulgaris) in the chronic exposure experiments (8 d and 21 d). In the experimental observations, the rapid change in copper mass between the solutions, extracellular and intracellular sites occurred within initial exposure periods, and then it was slower although the algal density changed with time. Our model showed a good agreement with the measured copper mass in each part for all tested conditions with an elapsed time (R2 for P. subcapitata: 0.928, R2 for C. vulgaris: 0.943). This study provides a novel kinetic dynamics model that is compromised between practical simplicity and realistic complexity, and it can be used to investigate the chronic effects of heavy metals on the algal population.

Phosphate solubilization by phosphate solubilizing microorganisms: insight into the mechanisms

  • Buddhi Charana, Walpola;Kodithuwakku Kankanange Indika Upali, Arunakumara;Min Ho, Yoon
    • 농업과학연구
    • /
    • 제49권3호
    • /
    • pp.463-481
    • /
    • 2022
  • Phosphorous (P) is considered to be one of the key essential elements demanded by crop plants. Approximately 70 - 90% of phosphatic fertilizers applied to crops are fixed in soil as Ca, Fe, and Al metal cations, which are insoluble and thus not readily available for plant uptake. Therefore, most soils are deficient in plant available P. This is usually rectified by applying phosphate fertilizers continuously, although this is not economically viable or environmentally acceptable. The present paper reviews the mechanisms involved with phosphate solubilization and mineralization by phosphate solubilizing microorganisms (PSMs) with the associated factors that determine the success. PSMs are effectively involved in mediating the bioavailability of soil P. Their contribution includes mineralization of organic P solubilization of inorganic P minerals, and storing sizable amounts of P in biomass through different mechanisms such as the production of organic and inorganic acids, H2S, siderophores, exopolysaccharides, and production of enzymes such as phosphatases, phytase, and phosphonatases/C-P lyases, which are capable of chelating the metal ions, forming complexes, and making plant available P. PSMs manifest a wide range of metabolic functions in different environments, resulting in significantly higher plant growth, enhanced soil properties, and increased biological activities. Therefore, development of bio-inoculants with efficient novel PSM strains and further investigations on exploring such strains from diverse ecological niches with multifunctional plant-growth-promoting traits are needed.

구리 와이어-나일론 복합소재 필라멘트를 이용한 적층제조 공정에 관한 연구 (A Study on the Additive Manufacturing Process using Copper Wire-Nylon Composite Filaments)

  • 김예진;김석;조영태
    • 한국기계가공학회지
    • /
    • 제21권5호
    • /
    • pp.1-8
    • /
    • 2022
  • Fused deposition modeling (FDM), based on stacking a continuous filament of polymer or composite materials, is well matured and is thus widely used in additive manufacturing technology. To advance FDM-based 3D printing technology, the mechanical properties of additively manufactured composite materials must be improved. In this study, we proposed a novel FDM 3D printing process using metal wire-polymer composites, enabling enhanced mechanical properties. In addition, we developed a new type FDM filament of copper wire wrapped in nylon material for stable 3D printing without thermal damage during the printing process. After FDM printing of the copper wire-nylon composite filament, we conducted a tensile test to investigate the mechanical behavior of the printed composite materials. The experimental results confirmed that the tensile strength of the 3D-printed metal wire-polymer composites was higher than that of the conventional single polymer material. Thus, we expect that the FDM printing process developed in this study may be promising for high-load-bearing applications.

10-GHz band 2 × 2 phased-array radio frequency receiver with 8-bit linear phase control and 15-dB gain control range using 65-nm complementary metal-oxide-semiconductor technology

  • Seon-Ho Han;Bon-Tae Koo
    • ETRI Journal
    • /
    • 제46권4호
    • /
    • pp.708-715
    • /
    • 2024
  • We propose a 10-GHz 2 × 2 phased-array radio frequency (RF) receiver with an 8-bit linear phase and 15-dB gain control range using 65-nm complementary metal-oxide-semiconductor technology. An 8 × 8 phased-array receiver module is implemented using 16 2 × 2 RF phased-array integrated circuits. The receiver chip has four single-to-differential low-noise amplifier and gain-controlled phase-shifter (GCPS) channels, four channel combiners, and a 50-Ω driver. Using a novel complementary bias technique in a phase-shifting core circuit and an equivalent resistance-controlled resistor-inductor-capacitor load, the GCPS based on vector-sum structure increases the phase resolution with weighting-factor controllability, enabling the vector-sum phase-shifting circuit to require a low current and small area due to its small 1.2-V supply. The 2 × 2 phased-array RF receiver chip has a power gain of 21 dB per channel and a 5.7-dB maximum single-channel noise-figure gain. The chip shows 8-bit phase states with a 2.39° root mean-square (RMS) phase error and a 0.4-dB RMS gain error with a 15-dB gain control range for a 2.5° RMS phase error over the 10 to10.5-GHz band.

Microstructural evolution and mechanical properties of TiC-Mo2C-WC-Ni multi-component powder by high energy ball milling

  • Jeong-Han Lee;Hyun-Kuk Park
    • Journal of Ceramic Processing Research
    • /
    • 제22권5호
    • /
    • pp.590-596
    • /
    • 2021
  • The widespread use of TiC-based cermets as cutting tools, thin-film, ultracapacitors, nozzles, and bearings is primarily due to exhibit combination of excellent mechanical properties such as low density, high hardness, and stiffness. The TiC cermets were synthesized by high energy ball milling, which includes binder metal (Ni), carbides (WC and Mo2C), wherein the present study focus on the relationship between the core-rim structure, phase constitution, and mechanical properties. Here, using in situ TEM, we clearly observed the behavior of adjacent core-rim formation from the solid-phase reaction with grain refinement of the TiC phase control of both the milling time and lattice formation. Also, we proposed that mechanically alloyed core-rim structure can affect oxidation resistance of TiC-Mo2C-WC-Ni cermets strongly related to activation energy attributed to TiC particle size. The mechanical properties of TiC-Mo2C-WC-Ni cermets suggest the hardening effect is not considered only grain refinement, but rather is solid solution strengthening and particle-dispersion hardening. The present study paves the relation to the formation behavior of both TiC hard phase and core-rim structure due to the mechanical powder synthesis of novel TiC-based cermets.