• 제목/요약/키워드: Novel chemical structure

검색결과 379건 처리시간 0.103초

Ginsenoside $Rg_5$, A Genuine Dammarane Glycoside from Korean Red Ginseng

  • Kim, Shin-Il;Park, Jeong-Hill;Ryu, Jae-Ha;Park, Jong-Dae;Lee, You-Hui;Park, Jae-Hyun;Kim, Tae-Hee;Kim, Jong-Moon;Baek, Nam-In
    • Archives of Pharmacal Research
    • /
    • 제19권6호
    • /
    • pp.551-553
    • /
    • 1996
  • A genuine dammarane glycoside, named ginsenoside $Rg_{5}$, has been isolated by repeated column chromatography and preparative HPLC from the MeOH extract of Korean red ginseng (Panax ginseng C.A. Meyer). The chemical structure of ginsenoside$ Rg_{5}$ was determined as $3-O-[{\beta}-D-glucopyranosyl (1{\rightarrow}2)-{\beta}-D-glucopyranosyl]$ dammar-20(22), $24-diene-3{\beta},12{\beta}-diol$ by spectral and chemical methods. The stereostructure of a double bond at C-20(22) of ginsenoside $Rg_{5}$ was characterized as (E) from the chemical shift of C-21 in the $^{13}C-NMR $and a NOESY experiment in the $^{1}H-NMR$.

  • PDF

Sensor Applications of Microporous Conjugated Polymers

  • 곽기섭
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.125-125
    • /
    • 2014
  • In 1991, Prof. Toshio Masuda of Kyoto University for the first time synthesized a representative of diphenylacetylene polymer derivatives, poly[1-phenyl-2-(p-trimethylsilyl)phenylacetylene] [PTMSDPA]. This polymer is highly soluble nevertheless a ultra-high molecular weight (Mw) of > $1.0{\times}10^6$ which showed excellent chemical, physical, mechanical properties [1]. As one of the most interesting features of PTMSDPA, Prof. Katsumi Yoshino of Osaka Univ. reported that this polymer emits an intense fluorescence (FL) in a visible region because of the effective exciton confinement within the resonant structure between the polyene pi-conjugated chain and side phenyl full-aromatic bulky groups [2]. Very recently, Prof. Ben-Zhong Tang of Hong-Kong Institute of Science and Technology clarified the idea that the FL emission of disubstituted acetylene polymer derivatives originates from intramolecular excimer due to the face-to-face stacking of the side phenyl groups [3]. Thus, to know what influence to intramolecular excimer emission in the film as well as to further understand how the intramolecular excimer forms in the film became more crucial in order to further precisely design the optimized molecular structure for highly emissive, substituted acetylene polymers in the solid state. In recent studies, we have focused our interests on the origin of the FL emission in order to expand our knowledge to developments of novel sensor applications. It was found that the intramolecular phenyl-pheyl stack structure of PTMSDPA in film was variable in response to various external chemical stimuli. Using PTMSDPA and its derivatives, we have developed various potential applications such as latent fingerprint identification, viscosity sensor, chemical-responsive actuator, gum-like soft conjugated polymer, and bioimaging. The details will be presented in the 49th KVS Symposium held in Pyong Chang city.

  • PDF

Cystocin, a Novel Antibiotic, Produced by Streptomyces sp. GCA0001: Production and Characterization of Cystocin

  • Sohng, Jae-Kyung;Lee, Hei-Chan;Liou, Kwang-Kyoung;Lee, Eui-Bok;Kang, Sun-Yub;Woo, Jin-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권4호
    • /
    • pp.483-486
    • /
    • 2003
  • 3'-[S-Methyl-cysteinyl]-3'-amino-3'-deoxy-N,N- dimethyl adenosine, cystocin, is a biosynthesized antibiotic material newly identified from Streptomyces sp. GCA0001. Its structure was found to be similar to puromycin, where the terminal tyrosine is replaced by a methyl cysteine. NMR data prove that the 3-ammo ribose is connected to dimethylaminopurine through the anomeric carbon at 1'-carbon. The methyl cysteinyl unit is connected to the amino unit of ribose by peptide bond. The verification of the structure was performed by comparing the puromycin nucleosides resulted from the hydrolysis of cystocin and puromycin, respectively. Antibiotic activity of cystocin against Streptococcus was found to be two times more potent than that of puromycin.

Development of Non-Immunosuppressive FK506 Derivatives as Antifungal and Neurotrophic Agents

  • Jung, Jin A;Yoon, Yeo Joon
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권1호
    • /
    • pp.1-10
    • /
    • 2020
  • FK506, also known as tacrolimus, is a clinically important immunosuppressant drug and has promising therapeutic potentials owing to its antifungal, neuroprotective, and neuroregenerative activities. To generate various FK506 derivatives, the structure of FK506 has been modified by chemical methods or biosynthetic pathway engineering. Herein, we describe the mode of the antifungal action of FK506 and the structure-activity relationship of FK506 derivatives in the context of immunosuppressive and antifungal activities. In addition, we discuss the neurotrophic mechanism of FK506 known to date, along with the neurotrophic FK506 derivatives with significantly reduced immunosuppressive activity. This review suggests the possibility to generate novel FK506 derivatives as antifungal as well as neuroregenerative/neuroprotective agents.

전해환원수를 이용한 탄산염 광물화 원료용 사문석의 전처리 (Serpentine Pretreatment Using Electrolyzed Reduced Water for Mineral Carbonation Materials)

  • 최원경
    • 한국수소및신에너지학회논문집
    • /
    • 제20권5호
    • /
    • pp.447-454
    • /
    • 2009
  • Electrolyzed reduced water was known as an alkaline solvent than piped water, natural water and mineral water etc. By means of reduction property, electrolyzed reduced water could dissolve a solute than other kinds of water without chemicals. In this study, serpentine dissolution in electrolyzed reduced water was investigated as a novel pre-treatment of serpentine which was a minerals for carbon dioxide sequestration. The elements (Ca, Si, Mg etc.) of serpentine were dissolved rapidly at early in the dissolvation then after some minutes the solubilities of serpentine elements showed stable state without abrupt changes. In spite of serpentine elements dissolution, chemical bondings and crystallographic structure of serpentine were not changed. It was explained that the dissolution mechanism of serpentine occurred from surface in electrolyzed reduced water and bulk structure sustained without collapse.

A Novel Cycloartane Glycoside from Thalictrum uchiyamai

  • Choi, Young-Hee;Kim, Nan-Gyeong;Lee, Ihn-Ran
    • Archives of Pharmacal Research
    • /
    • 제19권5호
    • /
    • pp.429-431
    • /
    • 1996
  • A new cycloartane glycoside (1) was isolated from the aerial part of Thalictrum uchiyamai Nakai (Ranunculaceae). On the basis of chemical and physicochemical evidence, the aglycone structure of this compound was characterized as 116, 25-dihydroxy-3, 24-diacetoxy-9, 19-cycloartane-29-oic acid, a new derivative of cycloartane triterpene. Also the oli-gosaccharide moiety of this glycoside were determined as 29-O-${alpha}$-L-rhanmnopyranosyl- ($1rightarrow2$)-[${beta}$-D-xylofuranosyl-($1rightarrow6$)-${beta}$-D-glucopyranose by application of HMBC technoque. Consequently, the structure of compound 1 was elucidated as 29-O-${alpha}$-L-rhanmnopyranosy-($1rightarrow2$)-[${beta}$-D-xylofuranosyl-($1rightarrow6$)-${beta}$-D-glucopyranosyl-16, 25-dihydroxy-3, 24-diacetoxy-9, 19-cycloartane-29-oic acid ester.

  • PDF

Visible-Light-Driven Catalytic Disinfection of Staphylococcus aureus Using Sandwich Structure g-C3N4/ZnO/Stellerite Hybrid Photocatalyst

  • Zhang, Wanzhong;Yu, Caihong;Sun, Zhiming;Zheng, Shuilin
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권6호
    • /
    • pp.957-967
    • /
    • 2018
  • A novel $g-C_3N_4$/ZnO/stellerite (CNZOS) hybrid photocatalyst, which was synthesized by coupled hydro thermal-thermal polymerization processing, was applied as an efficient visible-light-driven photocatalyst against Staphylococcus aureus. The optimum synthesized hybrid photocatalyst showed a sandwich structure morphology with layered $g-C_3N_4$ (doping amount: 40 wt%) deposited onto micron-sized ZnO/stellerite particles (ZnO average diameter: ~18 nm). It had a narrowing band gap (2.48 eV) and enlarged specific surface area ($23.05m^2/g$). The semiconductor heterojunction effect from ZnO to $g-C_3N_4$ leads to intensive absorption of the visible region and rapid separation of the photogenerated electron-hole pairs. In this study, CNZOS showed better photocatalytic disinfection efficiency than $g-C_3N_4/ZnO$ powders. The disinfection mechanism was systematically investigated by scavenger-quenching methods, indicating the important role of $H_2O_2$ in both systems. Furthermore, $h^+$ was demonstrated as another important radical in oxidative inactivation of the CNZOS system. In respect of the great disinfection efficiency and practicability, the CNZOS heterojunction photocatalyst may offer many disinfection applications.

Quinetides: diverse posttranslational modified peptides of ribonuclease-like storage protein from Panax quinquefolius as markers for differentiating ginseng species

  • Zhao, Qiang;Bai, Yunpeng;Liu, Dan;Zhao, Nan;Gao, Huiyuan;Zhang, Xiaozhe
    • Journal of Ginseng Research
    • /
    • 제44권5호
    • /
    • pp.680-689
    • /
    • 2020
  • Background: Peptides have diverse and important physiological roles in plants and are ideal markers for species identification. It is unclear whether there are specific peptides in Panax quinquefolius L. (PQ). The aims of this study were to identify Quinetides, a series of diverse posttranslational modified native peptides of the ribonuclease-like storage protein (ginseng major protein), from PQ to explore novel peptide markers and develop a new method to distinguish PQ from Panax ginseng. Methods: We used different fragmentation modes in the LTQ Orbitrap analysis to identify the enriched Quinetide targets of PQ, and we discovered Quinetide markers of PQ and P. ginseng using ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry analysis. These "peptide markers" were validated by simultaneously monitoring Rf and F11 as standard ginsenosides. Results: We discovered 100 Quinetides of PQ with various post-translational modifications (PTMs), including a series of glycopeptides, all of which originated from the protein ginseng major protein. We effectively distinguished PQ from P. ginseng using new "peptide markers." Four unique peptides (Quinetides TP6 and TP7 as markers of PQ and Quinetides TP8 and TP9 as markers of P. ginseng) and their associated glycosylation products were discovered in PQ and P. ginseng. Conclusion: We provide specific information on PQ peptides and propose the clinical application of peptide markers to distinguish PQ from P. ginseng.

Backbone NMR Assignments and Secondary Structure Determination of a Cupin-family Protein YaiE from Escherichia coli

  • Lee, Sung-Hee;Sim, Dae-Won;Kim, Eun-Hee;Kim, Ji-Hun;Won, Hyung-Sik
    • 한국자기공명학회논문지
    • /
    • 제21권2호
    • /
    • pp.50-54
    • /
    • 2017
  • Cupin-superfamily proteins represent the most functionally diverse groups of proteins and include a huge number of functionally uncharacterized proteins. Recently, YaiE, a cupin protein from Escherichia coli has been suggested to be involved in a novel activity of pyrimidine/purine nucleoside phosphorylase (PPNP). In the present study, we achieved a complete backbone NMR assignments of YaiE, by a series of heteronuclear multidimensional NMR experiments on its [$^{13}C/^{15}N$]-enriched sample. Subsequently, secondary structure analysis using the assigned chemical shift values identified 10 obvious ${\beta}-strands$ and a tentative $3_{10}-helix$. Taken all together, the results constitute the first structural characterization of a putative PPNP cupin protein.

Dynamics of Viral and Host 3D Genome Structure upon Infection

  • Meyer J. Friedman;Haram Lee;Young-Chan Kwon;Soohwan Oh
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권12호
    • /
    • pp.1515-1526
    • /
    • 2022
  • Eukaryotic chromatin is highly organized in the 3D nuclear space and dynamically regulated in response to environmental stimuli. This genomic organization is arranged in a hierarchical fashion to support various cellular functions, including transcriptional regulation of gene expression. Like other host cellular mechanisms, viral pathogens utilize and modulate host chromatin architecture and its regulatory machinery to control features of their life cycle, such as lytic versus latent status. Combined with previous research focusing on individual loci, recent global genomic studies employing conformational assays coupled with high-throughput sequencing technology have informed models for host and, in some cases, viral 3D chromosomal structure re-organization during infection and the contribution of these alterations to virus-mediated diseases. Here, we review recent discoveries and progress in host and viral chromatin structural dynamics during infection, focusing on a subset of DNA (human herpesviruses and HPV) as well as RNA (HIV, influenza virus and SARS-CoV-2) viruses. An understanding of how host and viral genomic structure affect gene expression in both contexts and ultimately viral pathogenesis can facilitate the development of novel therapeutic strategies.