DOI QR코드

DOI QR Code

Backbone NMR Assignments and Secondary Structure Determination of a Cupin-family Protein YaiE from Escherichia coli

  • Lee, Sung-Hee (Department of Biotechnology, College of Biomedical and Health Science, Konkuk University) ;
  • Sim, Dae-Won (Department of Biotechnology, College of Biomedical and Health Science, Konkuk University) ;
  • Kim, Eun-Hee (Protein Structure Group, Korea Basic Science Institute) ;
  • Kim, Ji-Hun (College of Pharmacy, Chungbuk National University) ;
  • Won, Hyung-Sik (Department of Biotechnology, College of Biomedical and Health Science, Konkuk University)
  • Received : 2017.04.02
  • Accepted : 2017.04.29
  • Published : 2017.06.20

Abstract

Cupin-superfamily proteins represent the most functionally diverse groups of proteins and include a huge number of functionally uncharacterized proteins. Recently, YaiE, a cupin protein from Escherichia coli has been suggested to be involved in a novel activity of pyrimidine/purine nucleoside phosphorylase (PPNP). In the present study, we achieved a complete backbone NMR assignments of YaiE, by a series of heteronuclear multidimensional NMR experiments on its [$^{13}C/^{15}N$]-enriched sample. Subsequently, secondary structure analysis using the assigned chemical shift values identified 10 obvious ${\beta}-strands$ and a tentative $3_{10}-helix$. Taken all together, the results constitute the first structural characterization of a putative PPNP cupin protein.

Keywords

References

  1. J. M. Dunwell, A. Purvis, and S. Khuri, Phytochemistry 65, 7 (2004) https://doi.org/10.1016/j.phytochem.2003.08.016
  2. R. Uberto and E.W. Moomaw, PLoS One 8, e74477 (2013) https://doi.org/10.1371/journal.pone.0074477
  3. D. C. Sevin, T. Fuhrer, N. Zamboni, and U. Sauer, Nat. Methods 14, 187 (2017) https://doi.org/10.1038/nmeth.4103
  4. M. J. Pugmire and S. E. Ealick, Biochem. J. 361, 1 (2002) https://doi.org/10.1042/bj3610001
  5. R.G. Silva, J.E. Nunes, F. Canduri, J.C. Borges, L.M. Gava, F.B. Moreno, L.A. Basso, and D.S. Santos, Curr. Drug Targets 8, 413 (2007) https://doi.org/10.2174/138945007780058997
  6. G. Liechti and J.B. Goldberg, J. Bacteriol. 194, 839 (2012) https://doi.org/10.1128/JB.05757-11
  7. F. Delaglio, S. Grzesiek, G. W. Vuister, G. Zhu, J. Pfeifer, and A. Bax, J. Biomol. NMR 6, 277 (1995)
  8. B. A. Johnson, Methods Mol. Biol. 278, 313 (2004)
  9. D. S. Wishart, and B. D. Sykes, J. Biomol. NMR 4, 171 (1994)
  10. Y. Shen, and A. Bax, J. Biomol. NMR 56, 227 (2013) https://doi.org/10.1007/s10858-013-9741-y
  11. Y. S. Lee, W. S. Yoon, I. Chung, K. Y. Chung, H. S. Won, and M. D. Seo, J. Kor. Magn. Reson. Soc. 19, 36 (2015) https://doi.org/10.6564/JKMRS.2015.19.1.036
  12. D. W. Sim, H. C. Ahn, and H. S. Won, J. Kor. Magn. Reson. Soc. 13, 108 (2009) https://doi.org/10.6564/JKMRS.2009.13.2.108
  13. D. W. Sim, Y. S. Lee, J. H. Kim, M. D. Seo, B. J. Lee, and W. S. Won, BMB Rep. 42, 387 (2009) https://doi.org/10.5483/BMBRep.2009.42.6.387
  14. D. W. Sim, J. H. Kim, H. Y. Kim, J. H. Jang, W. C. Lee, E. H. Kim, P. J. Park, K. H. Lee, and H. S. Won, FEBS Lett. 590, 2997 (2016) https://doi.org/10.1002/1873-3468.12332