• Title/Summary/Keyword: Notch stress analysis

Search Result 134, Processing Time 0.024 seconds

Fracture Characteristics of Concrete at Early Ages

  • Lee, Yun;Kim, Jin-Keun
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.3E
    • /
    • pp.191-198
    • /
    • 2006
  • The objective of this study is to examine fracture characteristics of concrete at early ages, i.g. critical stress intensity factor, critical crack-tip opening displacement, fracture energy, and bilinear softening curve based on the concepts of effective-elastic crack model and cohesive crack model. A wedge splitting test for Mode I was performed on cubic wedge specimens with a notch at the edge. By experimenting with various strengths and ages, load-crack mouth opening curves were obtained, and the results were analyzed by linear elastic fracture mechanics and FEM(finite element method). The results from the test and analysis showed that critical stress intensity factor and facture energy increased while critical crack-tip opening displacement decreased with concrete aging from 1 day to 28 days. Four parameters of bilinear softening curve from 1 day to 28 days were obtained from a numerical analysis. The obtained fracture parameters and bilinear softening curves at early ages from this study are to be used as a fracture criterion and an input data for the finite element analysis of concrete at early ages.

A Study on the Safety of Lifting Cable for Construction of Coastal Structures (항만건설을 위한 케이슨 들고리의 안전성에 관한 연구)

  • Kwak, Kae Hwan;Jang, Ki Woong;Kim, Jong Hyo
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.1 s.34
    • /
    • pp.85-99
    • /
    • 1998
  • This paper describes an experimental study to examine collapse causes of the lifting cable due to brittle failure of an fitting anchor under the lifting works. Also, in this study an collapse mechanism that was obtained from stress analysis was compared with an actual collapse procedure. Fractographical analysis as well as chemical component test, tension test and Charpy V-Notch impact test for the fractured steel members were carried out. And then, its results were compared with that of normal steel members. Circumferential surface flaws were developed at internal facets of the fitting anchor before tensile stress occurred. Hence, a higher stress than nominal stress was occurred at flaws by stress concentration at the crack tip. Also, stress intensity factor of members increased by crack size of the potential flaws. Because the stress intensity factor at the crack tip was greater than critical values(fracture toughness), brittle fracture occurred under the lifting works. It is judged that the main collapse of the lifting cable is due to brittle fracture of the fitting anchor.

  • PDF

The Finite Element Analysis on the Characteristics of the Hydrogen Diffusion for the Cr-Mo Steels (Cr-Mo강의 수소확산 특성에 관한 유한요소해석)

  • Lee, Hwi-Won;Ha, Min-Su
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.2
    • /
    • pp.115-121
    • /
    • 2011
  • The size of hydrogen molecule is not so small as to invade into the lattice of material, and therefore, hydrogen invades into the material as atom. Hydrogen movement is done by diffusion or dislocation movement in the near crack tip or plastic deformation. Hydrogen appeared to have many effects on the mechanical properties of the Cr-Mo steel alloys. The materials for this study are 1.25Cr-0.5Mo and 2.25Cr-1Mo steels used at high temperature and pressure. The hydrogen amount obtained by theoretical calculation was almost same with the result solved by finite element analysis. The distribution of hydrogen concentration and average concentration was calculated for a flat specimen. Also, finite element analysis was employed to simulate the redistribution of hydrogen due to stress gradient. The calculation of hydrogen concentration diffused into the material by finite element method will provide the basis for the prediction of delayed fracture of notched specimen. The distribution of hydrogen concentration invaded into the smooth and notched specimen was obtained by finite element analysis. The hydrogen amount is much in smooth specimen and tends to concentrate in the vicinity of surface. Hydrogen embrittlement susceptibility of notched specimen after hydrogen charging is more remarkable than that of smooth specimen.

Experimental and FE investigation of repairing deficient square CFST beams using FRP

  • Mustafa, Suzan A.A.
    • Steel and Composite Structures
    • /
    • v.29 no.2
    • /
    • pp.187-200
    • /
    • 2018
  • This paper handles the repairing of deficient square Concrete-Filled Steel-Tube (CFST) beams subject to bending through an experimental and numerical program. Eight square-CFST beams were tested. A 5-mm artificial notch was induced at mid-span of seven beams, four of them were repaired by using CFRP sheets and two were repaired by using GFRP sheets. The beam deflection, strain and ultimate moments were recorded. It was found that providing different cut-off points for the different layers of FRP sheets prohibited failure at termination points due to stress concentrations. Using different lengths of FRP sheets around the notch retarded crack propagation and prevented FRP rupture at the crack position. Finite element analysis was then conducted and the proposed FE model was verified against the recorded experimental data. The influence of various parameters as FRP sheet length, tensile modulus and the number of layers were studied. The moment capacity of damaged square-CFST beams was improved up to 77.6% when repaired by using four layers of CFRP, however, this caused a dramatic decrease in beam deflection. U-wrapping of notched-CFST beam with 0.75 of its length provided a comparable behaviour as wrapping the full length of the beam.

The Mixed Mode Fracture Using Concrete Disk (콘크리트 디스크를 이용한 혼합모드 파괴)

  • 진치섭;김희성;정진호
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.2
    • /
    • pp.63-69
    • /
    • 2000
  • This study investigates a new method of using a concrete disk to calculate stress intensity factor (SIF) for mixed mode cases. The results indicate that the disk method is more accurate than three point bending test (TPB) in obtaining correct SIF values for mixed mode fracture propagation. Stress intensity factors $K_{I}$ and $K_{II}$ are calculated using a center notched disk subjected to splitting load. The notch angle is calculated by finite element (FEM). Fracture toughness $K_\textsc{k}$ of the concrete is obtained from the load intensities at the initiation of crack propagation. According to the finite element analysis(FEA) and disk test, the results show that mode I and mixed mode cracks propagate toward the directions of crack face and loading point, respectively. The results from FEA with maximum stress theory compare well with the experimental date. Unlike TPB method where an accurate fracture toughness value is difficult to obtain due to the irregular shape of load deflection curve and delayed final crack propagation (following slow stable cracking). fracture toughness value is easily measured in the disk test from the crack initial load. Therefore, it is safe to conclude that disk method is more advantageous than TPB method in analyzing combined mode fracture problems.

Analysis of Fatigue Crack Opening: Belhlavioll Using Direct Measuring Method (직접측정법에 의한 피로크랙 개구거동의 해석)

  • Song, Sam-Hong;Kim, Hyun
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.8
    • /
    • pp.1493-1502
    • /
    • 1992
  • The purpose of this study is to identify the effects of loading variables on fatigue crack opening behavior, using structural steel SS41. To use various stress ratios, three kinds of the methods varying stress ratio were used; .DELTA.P const., P$_{max}$ const., and P$_{min}$ const.. To measure the opening load, the direct measuring method which measures the distance between two micro indentations 20 .mu.m behind crack tip and the elastic compliance method were used. As the results of present study, the following conclusions are obtained. First, using the direct measuring method, it was possible to measure the COD at any location behind crack tip. Second, as measuring point becomes farther from crack tip, opening load becomes smaller. Third, the acceleration of da/dN near notch is due to crack opening behavior. Finally, opening ratio is a function of not only R, but .DELTA.K.K.K.

Breathing Information Extraction Algorithm from PPG Signal for the Development of Respiratory Biofeedback App (호흡-바이오피드백 앱 개발을 위한 PPG기반의 호흡 추정 알고리즘)

  • Choi, Byunghun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.6
    • /
    • pp.794-798
    • /
    • 2018
  • There is a growing need for a care system that can continuously monitor, manage and effectively relieve stress for modern people. In recent years, mobile healthcare devices capable of measuring heart rate have become popular, and many stress monitoring techniques using heart rate variability analysis have been actively proposed and commercialized. In addition, respiratory biofeedback methods are used to provide stress relieving services in environments using mobile healthcare devices. In this case, breathing information should be measured well to assess whether the user is doing well in biofeedback training. In this study, we extracted the heart beat interval signal from the PPG and used the oscillator based notch filter based on the IIR band pass filter to track the strongest frequency in the heart beat interval signal. The respiration signal was then estimated by filtering the heart beat interval signal with this frequency as the center frequency. Experimental results showed that the number of breathing could be measured accurately when the subject was guided to take a deep breath. Also, in the timeing measurement of inspiration and expiration, a time delay of about 1 second occurred. It is expected that this will provide a respiratory biofeedback service that can assess whether or not breathing exercise are performed well.

A Study on the Fracture Characteristics of Pre-Cracked Fiber Reinforced Concrete (초기균열이 있는 강섬유보강 콘트리트의 파괴특성)

  • 곽기주
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.3
    • /
    • pp.53-63
    • /
    • 1992
  • To investgate the fracture behavior of the steel fiber reinforced concreate, the specimens with different steel fiber contents of 0.0%, 0.5%, 1.0%, 1.5%, were made and notched with differents notch depth ratios of 0.0,0.2, 0.4, 0.6, and the three point bend tests were followed. Test results of 16 different types of above combined specimens were summarized as follows. 1.The load line deflection contents were found to increase 5%, 16%, 19%, respectively, compared to the unnotched specimen with the increased of initial notch depth ratio to 0.2,0.4, 0.6, respectively. 2.The frexural strength were found to decrease 14%, 16%, 21 %, respectively, compared to the unnotched specimen with the increase of initial notch depth ratio to 0.2, 0.4, 0.6,respectively. 3.The stress intensity factors of the steel fiber reinforced concrete were found to increase 1.1 1.5 1.9 times, respectively, compared to the concrete with no steel fiber content with the increase of fiber content to 0.5%, 1.0%, 1.5%, respectively. 4.The influence of the mass of the steel fiber reinforced concrete to the whole fracture energy was found to be minor with 6~8 % contribution. 5.The fracture energy of the steel fiber reinforced concrete, considering the load-deflection curve and concrete mass was found to be approximately 350-380kg m/m$^2$. 6.The regression analysis through the relationship between the compressive(Oc)/tensile (OT) strength and fracture energy(Gf) showed that the fracture energy of the steel fiber reinforced concrete could be predicted as follows. Gf= 19.2662 Oc - 3940.4 Gf= 246.876 OT- 6008.8

  • PDF

Analysis of Mechanical Behavior and Fracture Toughness $K_{IC}$ on EGW Welded Joints for High Strength EH36-TMCP Ultra Thick Plate (고강도 극후판 EH36-TMCP강 EGW용접부의 역학적 거동 및 파괴인성 $K_{IC}$에 관한 해석)

  • Bang, Hee-Seon;Bang, Han-Sur;Joo, Sung-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.565-572
    • /
    • 2009
  • This work intends to establish the reliability and fracture toughness $K_{IC}$ criterion of welded joints by EGW for high strength EH36-TMCP ultra thick plate. For this, firstly thermo elasto-plastic analysis has been carried out on two pass X-groove butt joint model to clarify the thermal and mechanical behaviour(residual stress, plastic strain, magnitude of stress and their distribution and production mechanism). Moreover, to establish fracture criterion, analysis of fracture toughness $K_{IC}$ has been performed under the notch machined and residual stress with the load condition on EGW welded joints. A quantitative fracture criterion for EGW welded joints is suggested by using $K_{IC}$.

Analysis of Mechanical Properties and Stress Crack Behavior of HOPE Geomembranes by Laboratory Installation Damage Test (실내 시공시 손상시험에 의한 HDPE 지오멤브레인의 기계적 특성 및 응력균열거동 해석)

  • Khan, Belas Ahmed;Park, Ju-Hee;Kim, Sung-Hee;Chang, Yong-Chai;Oh, Tae-Hwan;Lyoo, Won-Seok;Jeon, Han-Yong
    • Polymer(Korea)
    • /
    • v.35 no.3
    • /
    • pp.203-209
    • /
    • 2011
  • Two smooth and textured surfaced HDPE geomembranes (GMs) were cut into dumbbell shape and notched where depth of the notch produced a ligament thickness of 10% to 90% of the nominal thickness with the specimen at 10% interval. A series of laboratory simulation test for installation damage were carried out at different loading cycles on HDPE GMs in accordance with ISO 10722 test method and the effect of number of loading cycle on installation damage was compared. It was found that yield stress and elongation at yield point decreased gradually as the notch depth was increased. Both installation damaged and notched, GMs were used to understand stress crack behavior and this behavior was observed through NCTL test at $50{\pm}1^{\circ}C$ at different yield stresses immerging in pH 4 and pH 12 buffer solutions. Over 35% tensile load, GMs became vulnerable to stress cracking. Both damaged and notched GMs showed the same trend. Especially, notched GMs showed less strength than installation damaged GMs at every stress cracking test condition.