• Title/Summary/Keyword: Notch stress

Search Result 348, Processing Time 0.022 seconds

Measurement of Structural Stress Concentration by PVDF Film Sensors (압전필름센서에 의한 구조물의 응력집중의 측정)

  • Kwon, Il-Bum;Kim, Chi-Yeop;Choi, Man-Yong;Lim, Jong-Mook;Kim, In-Gul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.4
    • /
    • pp.109-119
    • /
    • 2000
  • PVDF film sensor was applied to measure the stress concentration for monitoring the structural integrity. The strain calibration of this film sensor was performed by the bending test of aluminum beam. The PVDF sensor and the electrical strain gage were bonded on the beam. When the beam was loaded, the output of electrical strain gage was compared with the output of the PVDF sensor. The waveform of PVDF sensor output was shown as the same form of the output of electrical strain gage. The gain was determined as 1.7 by comparing these two signals to determine the exact value of the strain. In order to experiment the stress concentration, the stress field was analyzed by finite element analysis. The tensile test of notched steel specimens was conducted to develop the measurement technique of stress concentration. The output voltage ratio between the PVDF sensor near the notch and the PVDF sensor far from the notch could give the information about the load bearing capacity of steel specimen.

  • PDF

A Representative Stress for Unified Fatigue Damage Model

  • Nam, Yong-Yun
    • 연구논문집
    • /
    • s.34
    • /
    • pp.59-68
    • /
    • 2004
  • The hot spot stress approach and the notch strain approach are discussed with some results of them. And a stress model that can be applicable to several types of weld joints with single S-N curve of the base material. The stress model uses the geometric characteristics of the stress distribution vicinity of weld joints. The model was applied to five different weld joins(the base material is SM490B). By the representative stress, the experimental fatigue data are plotted very closely to the S-N curve of the base material.

  • PDF

A Study on Design of Fillet Weld Size for Stiffener in the Hull Bottom of Crude Oil Tanker (Crude Oil Tanker 선저부 보강재 필렛 용접부 각장 설계에 관한 연구)

  • Kang, Bong-Gook;Shin, Sang-Beom;Park, Dong-Hwan
    • Journal of Welding and Joining
    • /
    • v.32 no.1
    • /
    • pp.79-86
    • /
    • 2014
  • The purpose of this study is to determine the proper fillet weld size for the stiffeners on hull bottom plate of crude oil tanker. To achieve it, the effective notch stress and hot spot stress of the fillet weld with leg length specified in the rule were evaluated by using comprehensive FE analyses. Based on the results, the fatigue damages at each location of weld were calculated. Meanwhile the transitional behavior of initial welding distortion in the hull bottom plate under the design conditions was investigated by using a non-linear FEA. Welding distortion and residual stress introduced during fabrication process were considered as initial imperfections. According to FE analysis results, if the fillet leg length satisfies the design criteria of the classification society, the concern on the root failure at the fillet welds in the bottom hull plate during the design life can be negligible. In addition, considering the transitional behavior of the distortion during the service life, the fillet leg length should be minimized.

Using XFEM technique to predict the damage of unidirectional CFRP composite notched under tensile load

  • Benzaama, A.;Mokhtari, M.;Benzaama, H.;Gouasmi, S.;Tamine, T.
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.1
    • /
    • pp.129-139
    • /
    • 2018
  • The composite materials are widely used in aircraft structures. Their relative rigidity/weight gives them an important advantage over the metal structures. The objective of this work is to analyze by the finite element method the mechanical behavior of composite plate type notched with various forms under tensile load. Two basic parameters were taken into consideration. The first, the form of the notch in order to see its effect on the stress and the failure load. The second, we studied the influence of the locale orientation of fiber around the plate's notch. These parameters are studied in order to see their effects on the distribution stress and failure load of the plate. The calculation of the failure load is determined numerically with the numerical code ABAQUS using the XFEM (extended Finite Element Modeling) based on the fracture mechanics. The result shows clearly that it is important to optimize the effect of fiber orientation around the notch.

Experimental Examination of Ductile Crack Initiation with Strength Mismatch under Dynamic Loading - Criterion for Ductile Crack Initiation Effect of Strength Mismatch and Dynamic Loading (Report 1) - (동적하중 하에서의 강도적 불균질재의 연성크랙 발생거동의 실험적 검토 - 강도적 불균질 및 동적부하의 영향에 의한 연성크랙 발생조건 (제1보) -)

  • ;Mitsuru Ohata;Masao Toyoda
    • Journal of Welding and Joining
    • /
    • v.21 no.5
    • /
    • pp.575-581
    • /
    • 2003
  • It has been well known that the ductile cracking of steel would be accelerated by triaxial stress state. Recently, the characteristics of critical crack initiation of steels are quantitatively estimated using the two-parameters, that is, equivalent plastic strain and stress triaxiality, criterion. This study is paid to the fundamental clarification of the effect of geometrical heterogeneity and strength mismatching, which can elevate plastic constraint due to heterogeneous plastic straining, and loading rate on ductile crack initiation behavior. Also, the ductile crack initiation testing were conducted under static and dynamic loading using round bar specimens with circumferential notch and strength mis-matching. The result showed that the nominal strain at ductile crack initiation of circumferential notch specimens small then the round bar specimens for effect of geometrical discontinuity. Also, the nominal strain at ductile crack initiation was decreased with decrease of notch root radius of curvature.

Out-of-plane ductile failure of notch: Evaluation of Equivalent Material Concept

  • Torabi, A.R.;Saboori, Behnam;Kamjoo, M.R.
    • Structural Engineering and Mechanics
    • /
    • v.75 no.5
    • /
    • pp.559-569
    • /
    • 2020
  • In the present study, the fracture toughness of U-shaped notches made of aluminum alloy Al7075-T6 under combined tension/out-of-plane shear loading conditions (mixed mode I/III) is studied by theoretical and experimental methods. In the experimental part, U-notched test samples are loaded using a previously developed fixture under mixed mode I/III loading and their load-carrying capacity (LCC) is measured. Then, due to the presence of considerable plasticity in the notch vicinity at crack initiation instance, using the Equivalent Material Concept (EMC) and with the help of the point stress (PS) and mean stress (MS) brittle failure criteria, the LCC of the tested samples is predicted theoretically. The EMC equates a ductile material with a virtual brittle material in order to avoid performing elastic-plastic analysis. Because of the very good match between the EMC-PS and EMC-MS combined criteria with the experimental results, the use of the combination of the criteria with EMC is recommended for designing U-notched aluminum plates in engineering structures. Meanwhile, because of nearly the same accuracy of the two criteria and the simplicity of the PS criterion relations, the use of EMC-PS failure model in design of notched Al7075-T6 components is superior to the EMC-MS criterion.

The Research of the Strain Measuement Method on the Stress Concentration Area using 3D-ESPI System (3D-ESPI System을 이용한 응력집중부의 변형률 측정기법 연구)

  • 김경수;심천식;전종욱;김덕호
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.150-153
    • /
    • 2001
  • In this paper, the tensile test of three kinds of the specimens was performed. Type I specimen is without notch and type II, III specimens have a radius of semi-circular edge crack of 2.5mm, 4.0mm. The tensile load(20kN and 30kN) was applied to the specimen by Universal Testing Machine. 3D-ESPI system and strain gauge measured simultaneously the strain in the center of the specimen and near the edge crack. The test results were compared with each other. Moreover, the stress concentration factor based on geometric information was calculated to confirm the accuracy of the strain measured by 3D-ESPI system. The calculated strain was compared with the measured one by 3D-ESPI system. As a result, it was confirmed that 3D-ESPI system measured the right strain near the semi-circular edge crack of the specimens.

  • PDF

Characteristics of Fatigue Crack Growth in SM570, POSTEN60, 80 Steel (SM570, POSTEN60 및 80 강재의 피로균열성장특성)

  • Jeong, Young-Wha;Kim, lk-Gyeom;Kang, Sung-Lib;Nam, Wang-Hyone;Kim, Eun-Sung
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.329-336
    • /
    • 2001
  • In this study, a series of fatigue tests are carried out in order to estimate quantitatively the characteristics of fatigue crack growth rate for high strength steels of SM570, POSTEN60, and POSTEN80 steel, that is, the influence on fatigue crack growth rate according to the welding line, the characteristics of fatigue crack growth according to the welding method and the kinds of steel, and the characteristics of fatigue crack growth for base metal, heat affected zone and weld metal. From the test results, in case that the notch if parallel to welding line, it knows that the retardations of fatigue crack growth rate in crack tip at early stage increase remarkably than in case that the notch is perpendicular to welding line due to compressive residual stress. And the characteristics of fatigue crack growth rate according to welding method are that the dispersion of fatigue crack growth rate in case of FCAW method is smaller than that of SAW method. Also, it knows that the fatigue crack growth rate converges in high stress intensity factor range.

  • PDF

Failure analysis of prestressing steel wires

  • Toribio, J.;Valiente, A.
    • Steel and Composite Structures
    • /
    • v.1 no.4
    • /
    • pp.411-426
    • /
    • 2001
  • This paper treats the failure analysis of prestressing steel wires with different kinds of localised damage in the form of a surface defect (crack or notch) or as a mechanical action (transverse loads). From the microscopical point of view, the micromechanisms of fracture are shear dimples (associated with localised plasticity) in the case of the transverse loads and cleavage-like (related to a weakest-link fracture micromechanism) in the case of cracked wires. In the notched geometries the microscopic modes of fracture range from the ductile micro-void coalescence to the brittle cleavage, depending on the stress triaxiality in the vicinity of the notch tip. From the macroscopical point of view, fracture criteria are proposed as design criteria in damage tolerance analyses. The transverse load situation is solved by using an upper bound theorem of limit analysis in plasticity. The case of the cracked wire may be treated using fracture criteria in the framework of linear elastic fracture mechanics on the basis of a previous finite element computation of the stress intensity factor in the cracked cylinder. Notched geometries require the use of elastic-plastic fracture mechanics and numerical analysis of the stress-strain state at the failure situation. A fracture criterion is formulated on the basis of the critical value of the effective or equivalent stress in the Von Mises sense.

A Study on the Effect of Root Gap of Double Fillet Welded Joint Considering External Forces (외력을 고려한 양면 필릿용접이음부 루트갭의 영향에 관한 연구)

  • 방한서;김성환
    • Proceedings of the KWS Conference
    • /
    • 1997.05a
    • /
    • pp.107-111
    • /
    • 1997
  • In this paper distribution of welding residual stress on the double fillet welded joint which exits and not exits root gap, i.e. full penetration and partial penetration is investigated by two dimensional cunduct and thermal elasto-plastic analysis. And stress distribution on notch-tip of the structure where welding residual stress regarded as initial stress and then external load is added is also investigated.

  • PDF