• Title/Summary/Keyword: Notch radius

Search Result 53, Processing Time 0.099 seconds

Thermal Shock Resistance Property of TaC Added Ti(C,N)-Ni Cermets (TaC 첨가 Ti(C,N)-Ni 서멧의 내열충격 특성)

  • Shin, Soon-Gi
    • Korean Journal of Materials Research
    • /
    • v.24 no.10
    • /
    • pp.526-531
    • /
    • 2014
  • Thermal shock resistance property has recently been considered to be one of the most important basic properties, in the same way that the transverse-rupture property is important for sintered hard materials such as ceramics, cemented carbides, and cermets. Attempts were made to evaluate the thermal shock resistance property of 10 vol% TaC added Ti(C,N)-Ni cermets using the infrared radiation heating method. The method uses a thin circular disk that is heated by infrared rays in the central area with a constant heat flux. The technique makes it possible to evaluate the thermal shock strength (Tss) and thermal shock fracture toughness (Tsf) directly from the electric powder charge and the time of fracture, despite the fact that Tss and Tsf consist of the thermal properties of the material tested. Tsf can be measured for a specimen with an edge notch, while Tss cannot be measured for specimens without such a notch. It was thought, however, that Tsf might depend on the radius of curvature of the edge notch. Using the Tsf data, Tss was calculated using a consideration of the stress concentration. The thermal shock resistance property of 10 vol% TaC added Ti(C,N)-Ni cermet increased with increases in the content of nitrogen and Ni. As a result, it was considered that Tss could be applied to an evaluation of the thermal shock resistance of cermets.

A Study on Fatigue Crack Growth and Stress Intensity Factors of Notch Materials (노치재의 피로균열진전과 응력확대계수 평가에 관한 연구)

  • Lee, Jong-Hyung;Lee, Sang-Young;Yi, Chang-Heon;Kim, Yun-Gon;Lim, Chun-Kyoo;Lee, Chun-Kon;Kwon, Yung-Shin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.3
    • /
    • pp.165-169
    • /
    • 2007
  • Prediction of fatigue duration is attainable from the analysis of the growth rate of the fatigue crack, and the property of the fatigue crack growth is determined by the calculation of the stress intensity factor. And the evaluation of the stress intensity factor, K comes from the stress analysis of the vicinity of crack tip of the continuum. This study describes a simple method to decide the stress intensity factor for the small crack at the sharp edge notches. The proposed method is based on the similarities between elastic stress fields of the notch tip described by two parameters, the stress concentration factor K, the radius of arc of the notch. And it is applicable to the analysis of the semi-elliptical penetration cracks and the edge notches.

  • PDF

A Study on the Failure Characteristics of Ceramic Tool for Hardened Steels (경화강에 대한 세라믹공구의 손상특성에 관한 연구)

  • 김광래;유봉환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.4
    • /
    • pp.30-37
    • /
    • 1997
  • This thesis is concerned with the study on the characteristics of the tool failure occuring at the beginning of cutting in finish machining of hardened steels such as carbon tool steel and alloy tool steel by a ceramic tool (Al$_{2}$O$_{3}$+TiC) with nose radius. In the machining of hardened carbon steel STC3, the wear mechanism on the flank face of the ceramic tool is abrasion wear. The mode of tool failure is developed into catastropic fracture with flaking. It is thought that the fracture caused by FeO and TiO$_{2}$ results from the oxidation of Fe in the workpice and TiC in the ceramic tool and the deposit of Fe formed on the surface of the ceramic tool. In the machining of hardened alloy steel STD11, the wear mechanism on the flank face of the ceramic tool is that abrasion and adhesion wear exist simultaneously. The mode of tool failure at the beginning of cutting features is DOC notch wear. It is thought that the DOC notch wear caused by FeO and TiO$_{2}$results from the oxidation of Fe and TiC in the workpiece and ceramic tool, respectively.

  • PDF

Experimental Examination of Ductile Crack Initiation with Strength Mismatch under Dynamic Loading - Criterion for Ductile Crack Initiation Effect of Strength Mismatch and Dynamic Loading (Report 1) - (동적하중 하에서의 강도적 불균질재의 연성크랙 발생거동의 실험적 검토 - 강도적 불균질 및 동적부하의 영향에 의한 연성크랙 발생조건 (제1보) -)

  • ;Mitsuru Ohata;Masao Toyoda
    • Journal of Welding and Joining
    • /
    • v.21 no.5
    • /
    • pp.575-581
    • /
    • 2003
  • It has been well known that the ductile cracking of steel would be accelerated by triaxial stress state. Recently, the characteristics of critical crack initiation of steels are quantitatively estimated using the two-parameters, that is, equivalent plastic strain and stress triaxiality, criterion. This study is paid to the fundamental clarification of the effect of geometrical heterogeneity and strength mismatching, which can elevate plastic constraint due to heterogeneous plastic straining, and loading rate on ductile crack initiation behavior. Also, the ductile crack initiation testing were conducted under static and dynamic loading using round bar specimens with circumferential notch and strength mis-matching. The result showed that the nominal strain at ductile crack initiation of circumferential notch specimens small then the round bar specimens for effect of geometrical discontinuity. Also, the nominal strain at ductile crack initiation was decreased with decrease of notch root radius of curvature.

The Research of the Strain Measuement Method on the Stress Concentration Area using 3D-ESPI System (3D-ESPI System을 이용한 응력집중부의 변형률 측정기법 연구)

  • 김경수;심천식;전종욱;김덕호
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.150-153
    • /
    • 2001
  • In this paper, the tensile test of three kinds of the specimens was performed. Type I specimen is without notch and type II, III specimens have a radius of semi-circular edge crack of 2.5mm, 4.0mm. The tensile load(20kN and 30kN) was applied to the specimen by Universal Testing Machine. 3D-ESPI system and strain gauge measured simultaneously the strain in the center of the specimen and near the edge crack. The test results were compared with each other. Moreover, the stress concentration factor based on geometric information was calculated to confirm the accuracy of the strain measured by 3D-ESPI system. The calculated strain was compared with the measured one by 3D-ESPI system. As a result, it was confirmed that 3D-ESPI system measured the right strain near the semi-circular edge crack of the specimens.

  • PDF

Effect of Geometrical Discontinuity on Ductile Fracture Initiation Behavior under Static Leading

  • An, G.B.;Ohata, M.;Toyoda, M.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.1
    • /
    • pp.51-56
    • /
    • 2003
  • It is important to evaluate the fracture initiation behaviors of steel structure. It has been well known that the ductile cracking of steel would be accelerated by triaxial stress state. Recently, the characteristics of critical crack initiation of steels are quantitatively estimated using the two-parameters, that is, equivalent plastic strain and stress triaxiality, criterion. This study is paid to the fundamental clarification of the effect of notch radius, which can elevate plastic constraint due to heterogeneous plastic straining on critical condition to initiate ductile crack using two-parameters. Hense, the crack initiation testing were conducted under static loading using round bar specimens with circumferential notch. To evaluate the stress/strain state in the specimens was used thermal elastic-plastic FE-analysis. The result showed that equivalent plastic strain to initiate ductile crack expressed as a function of stress triaxiality obtained from the homogeneous specimens with circumferential notched under static loading. And it was evaluated that by using this two-parameters criterion, the critical crack initiation of homogeneous specimens under static loading.

  • PDF

Electrical Characteristics and FEM Simulations of Beam Type Load Cell (Beam형(形) Load Cell의 FEM Simulation과 그 전기적특성(電氣的特性))

  • Park, Chan-Won;An, Kwang-Hee;Choi, Gyu-Seok
    • Journal of Industrial Technology
    • /
    • v.12
    • /
    • pp.25-36
    • /
    • 1992
  • In this paper, we simulate and calculate the stress and output voltage of the beam structure load cells by using FEM as varing physical structure parameters and loading positions. It is proved that stress enhance as the increase of the notch pitch and radius of the load cell, but decrease as the increase of the notch thickness and beam width. The results are good matched for basic formulas of the single fixed beam, and are verified our simulation is correct. Also, it is found that the stress characteristics of the load cell is varied according to loading positions with structure parameters, and caculated output voltage of the load cell approximate to those of the real manufactured ones. As a result, this study will offer efficient design and analysis technique for making special and variety capacity of load cells.

  • PDF

Stress Concentration Factor and Stress Intensity Factor with U-notch and Crack in the Beam (U-노치 및 균열을 갖는 보의 응력집중계수 및 응력확대계수)

  • Seo, Bo Seong;Lee, Kwang Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.5
    • /
    • pp.513-523
    • /
    • 2016
  • The stress concentration factors and stress intensity factors for a simple beam and a cantilever are analyzed by using finite element method and phtoelasticity. Using the analyzed results, the estimated graphs on stress concentration factors and stress intensity factors are obtained. To analyze stress concentration factors of notch, the dimensionless notch length H(height of specimen)/h=1.1~2 and dimensionless gap space r(radius at the notch tip)/h=0.1~0.5 are used. where h=H-c and c is the notch length. As the notch gap length increases and the gap decreases, the stress concentration factors increase. Stress concentration factors of a simple beam are greater than those of a cantilever beam. However, actually, the maximum stress values under a load, a notch length and a gap occur more greatly in the cantilever beam than in the simple beam. To analyze stress intensity factors, the normalized crack length a(crack length)/H=0.2~0.5 is used. As the length of the crack increases, the normalized stress intensity factors increase. The stress intensity factors under a constant load and a crack length occur more greatly in the cantilever beam than in the simple beam.

The Analysis of Fatigue Quality Index for Shape of Elliptical Hole in Plate (평판에서 타원공의 형상에 따른 피로도지수 해석)

  • 송준혁;노홍길;강희용;양성모
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.130-136
    • /
    • 2003
  • A FQI(fatigue quality index) analysis using the concept of SF(severity factor) is performed to various shape of elliptical hole. FQI is fatigue quality index to estimate the dynamic SF from static SF by finite element analysis. Since the SF is affected by the location of cutout in plate and radius ratio, static SF is analyzed with finite element method and forms the equation of FQI for predicting a dynamic SF. To examine the validity, dynamic SF is measured by photoelastics and thermalelastics for an epoxy resin plate with various elliptical holes under dynamic load.

  • PDF

Correlation between Component Fatigue Performance and Results from Plane Bending Fatigue Tests on Notched Samples

  • Bergmark, Anders;Dizdar, Senad;Bengtsson, Sven;Luk, Sydney
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.381-382
    • /
    • 2006
  • A comparative study is made on root bending fatigue performance of spur gears and plane bending fatigue performance of notched test bars. R = 0 root bending fatigue tests are made on small spur gears with critical root radius 1.0 mm. The results are compared to plane bending fatigue tests of 0.9 mm radius notched specimens. Results are presented for tests on 4%Ni/2%Cu/1.5%Mo prealloyed PM steel with addition of about 0.6% graphite. Predicted values from the test bars coincide well with the results obtained from the gear root fatigue tests.

  • PDF